This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism part of the op functor on functor categories. Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opf2fval.f | |- ( ph -> F = ( x e. A , y e. B |-> ( _I |` ( y N x ) ) ) ) |
|
| opf2fval.x | |- ( ph -> X e. A ) |
||
| opf2fval.y | |- ( ph -> Y e. B ) |
||
| Assertion | opf2fval | |- ( ph -> ( X F Y ) = ( _I |` ( Y N X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | |- ( ph -> F = ( x e. A , y e. B |-> ( _I |` ( y N x ) ) ) ) |
|
| 2 | opf2fval.x | |- ( ph -> X e. A ) |
|
| 3 | opf2fval.y | |- ( ph -> Y e. B ) |
|
| 4 | simprr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
|
| 5 | simprl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
|
| 6 | 4 5 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y N x ) = ( Y N X ) ) |
| 7 | 6 | reseq2d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( _I |` ( y N x ) ) = ( _I |` ( Y N X ) ) ) |
| 8 | ovexd | |- ( ph -> ( Y N X ) e. _V ) |
|
| 9 | resiexg | |- ( ( Y N X ) e. _V -> ( _I |` ( Y N X ) ) e. _V ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( _I |` ( Y N X ) ) e. _V ) |
| 11 | 1 7 2 3 10 | ovmpod | |- ( ph -> ( X F Y ) = ( _I |` ( Y N X ) ) ) |