This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsumre , fsumim , and fsumcj . (Contributed by Mario Carneiro, 25-Jul-2014) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumre.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumre.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumrelem.3 | ⊢ 𝐹 : ℂ ⟶ ℂ | ||
| fsumrelem.4 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | fsumrelem | ⊢ ( 𝜑 → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumre.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumre.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | fsumrelem.3 | ⊢ 𝐹 : ℂ ⟶ ℂ | |
| 4 | fsumrelem.4 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) | |
| 5 | 0cn | ⊢ 0 ∈ ℂ | |
| 6 | 3 | ffvelcdmi | ⊢ ( 0 ∈ ℂ → ( 𝐹 ‘ 0 ) ∈ ℂ ) |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐹 ‘ 0 ) ∈ ℂ |
| 8 | 7 | addridi | ⊢ ( ( 𝐹 ‘ 0 ) + 0 ) = ( 𝐹 ‘ 0 ) |
| 9 | fvoveq1 | ⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 0 + 𝑦 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 0 + 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 0 → ( 0 + 𝑦 ) = ( 0 + 0 ) ) | |
| 14 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝑦 = 0 → ( 0 + 𝑦 ) = 0 ) |
| 16 | 15 | fveq2d | ⊢ ( 𝑦 = 0 → ( 𝐹 ‘ ( 0 + 𝑦 ) ) = ( 𝐹 ‘ 0 ) ) |
| 17 | fveq2 | ⊢ ( 𝑦 = 0 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 0 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑦 = 0 → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 0 ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑦 = 0 → ( ( 𝐹 ‘ ( 0 + 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 0 ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 0 ) ) ) ) |
| 20 | 12 19 4 | vtocl2ga | ⊢ ( ( 0 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝐹 ‘ 0 ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 0 ) ) ) |
| 21 | 5 5 20 | mp2an | ⊢ ( 𝐹 ‘ 0 ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 0 ) ) |
| 22 | 8 21 | eqtr2i | ⊢ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 0 ) ) = ( ( 𝐹 ‘ 0 ) + 0 ) |
| 23 | 7 7 5 | addcani | ⊢ ( ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 0 ) ) = ( ( 𝐹 ‘ 0 ) + 0 ) ↔ ( 𝐹 ‘ 0 ) = 0 ) |
| 24 | 22 23 | mpbi | ⊢ ( 𝐹 ‘ 0 ) = 0 |
| 25 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 26 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 27 | 25 26 | eqtrdi | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 28 | 27 | fveq2d | ⊢ ( 𝐴 = ∅ → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝐹 ‘ 0 ) ) |
| 29 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) = Σ 𝑘 ∈ ∅ ( 𝐹 ‘ 𝐵 ) ) | |
| 30 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( 𝐹 ‘ 𝐵 ) = 0 | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) = 0 ) |
| 32 | 24 28 31 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) |
| 33 | 32 | a1i | ⊢ ( 𝜑 → ( 𝐴 = ∅ → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) ) |
| 34 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 35 | 34 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 36 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 39 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 41 | fco | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) | |
| 42 | 37 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑥 ) ∈ ℂ ) |
| 44 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 45 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 46 | 44 45 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 47 | 4 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 40 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 50 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 51 | 50 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 52 | 49 2 51 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 53 | 52 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 54 | fvex | ⊢ ( 𝐹 ‘ 𝐵 ) ∈ V | |
| 55 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) | |
| 56 | 55 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝐵 ) ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 57 | 49 54 56 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 58 | 53 57 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) ) |
| 59 | 58 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) ) |
| 61 | nfcv | ⊢ Ⅎ 𝑘 𝐹 | |
| 62 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) | |
| 63 | 61 62 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 64 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) | |
| 65 | 63 64 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 66 | 2fveq3 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | |
| 67 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 68 | 66 67 | eqeq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 69 | 65 68 | rspc | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑘 ) → ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 70 | 48 60 69 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 71 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 72 | 40 71 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 73 | 72 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐹 ‘ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 74 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 75 | 40 74 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑥 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 76 | 70 73 75 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐹 ‘ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑥 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∘ 𝑓 ) ‘ 𝑥 ) ) |
| 77 | 35 43 46 47 76 | seqhomo | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐹 ‘ ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 78 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 79 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 80 | 78 44 38 79 72 | fsum | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 81 | 80 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐹 ‘ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = ( 𝐹 ‘ ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 82 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 83 | 3 | ffvelcdmi | ⊢ ( 𝐵 ∈ ℂ → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 84 | 2 83 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 85 | 84 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 87 | 86 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 88 | 82 44 38 87 75 | fsum | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 89 | 77 81 88 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐹 ‘ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑚 ) ) |
| 90 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐵 | |
| 91 | 90 | fveq2i | ⊢ ( 𝐹 ‘ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ) = ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 92 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) | |
| 93 | 89 91 92 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) |
| 94 | 93 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) ) |
| 95 | 94 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) ) |
| 96 | 95 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) ) |
| 97 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 98 | 1 97 | syl | ⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 99 | 33 96 98 | mpjaod | ⊢ ( 𝜑 → ( 𝐹 ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝐵 ) ) |