This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumeq1 | |- ( A = B -> sum_ k e. A C = sum_ k e. B C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = B -> ( A C_ ( ZZ>= ` m ) <-> B C_ ( ZZ>= ` m ) ) ) |
|
| 2 | simpl | |- ( ( A = B /\ n e. ZZ ) -> A = B ) |
|
| 3 | 2 | eleq2d | |- ( ( A = B /\ n e. ZZ ) -> ( n e. A <-> n e. B ) ) |
| 4 | 3 | ifbid | |- ( ( A = B /\ n e. ZZ ) -> if ( n e. A , [_ n / k ]_ C , 0 ) = if ( n e. B , [_ n / k ]_ C , 0 ) ) |
| 5 | 4 | mpteq2dva | |- ( A = B -> ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) = ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) |
| 6 | 5 | seqeq3d | |- ( A = B -> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) = seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ) |
| 7 | 6 | breq1d | |- ( A = B -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x <-> seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) |
| 8 | 1 7 | anbi12d | |- ( A = B -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) <-> ( B C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) ) |
| 9 | 8 | rexbidv | |- ( A = B -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) <-> E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) ) |
| 10 | f1oeq3 | |- ( A = B -> ( f : ( 1 ... m ) -1-1-onto-> A <-> f : ( 1 ... m ) -1-1-onto-> B ) ) |
|
| 11 | 10 | anbi1d | |- ( A = B -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 12 | 11 | exbidv | |- ( A = B -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 13 | 12 | rexbidv | |- ( A = B -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 14 | 9 13 | orbi12d | |- ( A = B -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) <-> ( E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
| 15 | 14 | iotabidv | |- ( A = B -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
| 16 | df-sum | |- sum_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
|
| 17 | df-sum | |- sum_ k e. B C = ( iota x ( E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. B , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
|
| 18 | 15 16 17 | 3eqtr4g | |- ( A = B -> sum_ k e. A C = sum_ k e. B C ) |