This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for sum: if x is (effectively) not free in A and B , it is not free in sum_ k e. A B . Version of nfsum with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 11-Dec-2005) (Revised by GG, 24-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsum.1 | |- F/_ x A |
|
| nfsum.2 | |- F/_ x B |
||
| Assertion | nfsum | |- F/_ x sum_ k e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsum.1 | |- F/_ x A |
|
| 2 | nfsum.2 | |- F/_ x B |
|
| 3 | df-sum | |- sum_ k e. A B = ( iota z ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 4 | nfcv | |- F/_ x ZZ |
|
| 5 | nfcv | |- F/_ x ( ZZ>= ` m ) |
|
| 6 | 1 5 | nfss | |- F/ x A C_ ( ZZ>= ` m ) |
| 7 | nfcv | |- F/_ x m |
|
| 8 | nfcv | |- F/_ x + |
|
| 9 | 1 | nfcri | |- F/ x n e. A |
| 10 | nfcv | |- F/_ x n |
|
| 11 | 10 2 | nfcsbw | |- F/_ x [_ n / k ]_ B |
| 12 | nfcv | |- F/_ x 0 |
|
| 13 | 9 11 12 | nfif | |- F/_ x if ( n e. A , [_ n / k ]_ B , 0 ) |
| 14 | 4 13 | nfmpt | |- F/_ x ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 15 | 7 8 14 | nfseq | |- F/_ x seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) |
| 16 | nfcv | |- F/_ x ~~> |
|
| 17 | nfcv | |- F/_ x z |
|
| 18 | 15 16 17 | nfbr | |- F/ x seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> z |
| 19 | 6 18 | nfan | |- F/ x ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> z ) |
| 20 | 4 19 | nfrexw | |- F/ x E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> z ) |
| 21 | nfcv | |- F/_ x NN |
|
| 22 | nfcv | |- F/_ x f |
|
| 23 | nfcv | |- F/_ x ( 1 ... m ) |
|
| 24 | 22 23 1 | nff1o | |- F/ x f : ( 1 ... m ) -1-1-onto-> A |
| 25 | nfcv | |- F/_ x 1 |
|
| 26 | nfcv | |- F/_ x ( f ` n ) |
|
| 27 | 26 2 | nfcsbw | |- F/_ x [_ ( f ` n ) / k ]_ B |
| 28 | 21 27 | nfmpt | |- F/_ x ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
| 29 | 25 8 28 | nfseq | |- F/_ x seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
| 30 | 29 7 | nffv | |- F/_ x ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 31 | 30 | nfeq2 | |- F/ x z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 32 | 24 31 | nfan | |- F/ x ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 33 | 32 | nfex | |- F/ x E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 34 | 21 33 | nfrexw | |- F/ x E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 35 | 20 34 | nfor | |- F/ x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 36 | 35 | nfiotaw | |- F/_ x ( iota z ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 37 | 3 36 | nfcxfr | |- F/_ x sum_ k e. A B |