This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange order of summation. Note that B ( j ) and D ( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016) (Proof shortened by JJ, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcom2.1 | |- ( ph -> A e. Fin ) |
|
| fsumcom2.2 | |- ( ph -> C e. Fin ) |
||
| fsumcom2.3 | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
||
| fsumcom2.4 | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. C /\ j e. D ) ) ) |
||
| fsumcom2.5 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> E e. CC ) |
||
| Assertion | fsumcom2 | |- ( ph -> sum_ j e. A sum_ k e. B E = sum_ k e. C sum_ j e. D E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcom2.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumcom2.2 | |- ( ph -> C e. Fin ) |
|
| 3 | fsumcom2.3 | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
|
| 4 | fsumcom2.4 | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. C /\ j e. D ) ) ) |
|
| 5 | fsumcom2.5 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> E e. CC ) |
|
| 6 | relxp | |- Rel ( { j } X. B ) |
|
| 7 | 6 | rgenw | |- A. j e. A Rel ( { j } X. B ) |
| 8 | reliun | |- ( Rel U_ j e. A ( { j } X. B ) <-> A. j e. A Rel ( { j } X. B ) ) |
|
| 9 | 7 8 | mpbir | |- Rel U_ j e. A ( { j } X. B ) |
| 10 | relcnv | |- Rel `' U_ k e. C ( { k } X. D ) |
|
| 11 | ancom | |- ( ( x = j /\ y = k ) <-> ( y = k /\ x = j ) ) |
|
| 12 | vex | |- x e. _V |
|
| 13 | vex | |- y e. _V |
|
| 14 | 12 13 | opth | |- ( <. x , y >. = <. j , k >. <-> ( x = j /\ y = k ) ) |
| 15 | 13 12 | opth | |- ( <. y , x >. = <. k , j >. <-> ( y = k /\ x = j ) ) |
| 16 | 11 14 15 | 3bitr4i | |- ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) |
| 17 | 16 | a1i | |- ( ph -> ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) ) |
| 18 | 17 4 | anbi12d | |- ( ph -> ( ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
| 19 | 18 | 2exbidv | |- ( ph -> ( E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
| 20 | eliunxp | |- ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) ) |
|
| 21 | 12 13 | opelcnv | |- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> <. y , x >. e. U_ k e. C ( { k } X. D ) ) |
| 22 | eliunxp | |- ( <. y , x >. e. U_ k e. C ( { k } X. D ) <-> E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
|
| 23 | excom | |- ( E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
|
| 24 | 21 22 23 | 3bitri | |- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
| 25 | 19 20 24 | 3bitr4g | |- ( ph -> ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) ) |
| 26 | 9 10 25 | eqrelrdv | |- ( ph -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
| 27 | nfcv | |- F/_ m ( { j } X. B ) |
|
| 28 | nfcv | |- F/_ j { m } |
|
| 29 | nfcsb1v | |- F/_ j [_ m / j ]_ B |
|
| 30 | 28 29 | nfxp | |- F/_ j ( { m } X. [_ m / j ]_ B ) |
| 31 | sneq | |- ( j = m -> { j } = { m } ) |
|
| 32 | csbeq1a | |- ( j = m -> B = [_ m / j ]_ B ) |
|
| 33 | 31 32 | xpeq12d | |- ( j = m -> ( { j } X. B ) = ( { m } X. [_ m / j ]_ B ) ) |
| 34 | 27 30 33 | cbviun | |- U_ j e. A ( { j } X. B ) = U_ m e. A ( { m } X. [_ m / j ]_ B ) |
| 35 | nfcv | |- F/_ n ( { k } X. D ) |
|
| 36 | nfcv | |- F/_ k { n } |
|
| 37 | nfcsb1v | |- F/_ k [_ n / k ]_ D |
|
| 38 | 36 37 | nfxp | |- F/_ k ( { n } X. [_ n / k ]_ D ) |
| 39 | sneq | |- ( k = n -> { k } = { n } ) |
|
| 40 | csbeq1a | |- ( k = n -> D = [_ n / k ]_ D ) |
|
| 41 | 39 40 | xpeq12d | |- ( k = n -> ( { k } X. D ) = ( { n } X. [_ n / k ]_ D ) ) |
| 42 | 35 38 41 | cbviun | |- U_ k e. C ( { k } X. D ) = U_ n e. C ( { n } X. [_ n / k ]_ D ) |
| 43 | 42 | cnveqi | |- `' U_ k e. C ( { k } X. D ) = `' U_ n e. C ( { n } X. [_ n / k ]_ D ) |
| 44 | 26 34 43 | 3eqtr3g | |- ( ph -> U_ m e. A ( { m } X. [_ m / j ]_ B ) = `' U_ n e. C ( { n } X. [_ n / k ]_ D ) ) |
| 45 | 44 | sumeq1d | |- ( ph -> sum_ z e. U_ m e. A ( { m } X. [_ m / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = sum_ z e. `' U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 46 | vex | |- n e. _V |
|
| 47 | vex | |- m e. _V |
|
| 48 | 46 47 | op1std | |- ( w = <. n , m >. -> ( 1st ` w ) = n ) |
| 49 | 48 | csbeq1d | |- ( w = <. n , m >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ n / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 50 | 46 47 | op2ndd | |- ( w = <. n , m >. -> ( 2nd ` w ) = m ) |
| 51 | 50 | csbeq1d | |- ( w = <. n , m >. -> [_ ( 2nd ` w ) / j ]_ E = [_ m / j ]_ E ) |
| 52 | 51 | csbeq2dv | |- ( w = <. n , m >. -> [_ n / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 53 | 49 52 | eqtrd | |- ( w = <. n , m >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 54 | 47 46 | op2ndd | |- ( z = <. m , n >. -> ( 2nd ` z ) = n ) |
| 55 | 54 | csbeq1d | |- ( z = <. m , n >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ n / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 56 | 47 46 | op1std | |- ( z = <. m , n >. -> ( 1st ` z ) = m ) |
| 57 | 56 | csbeq1d | |- ( z = <. m , n >. -> [_ ( 1st ` z ) / j ]_ E = [_ m / j ]_ E ) |
| 58 | 57 | csbeq2dv | |- ( z = <. m , n >. -> [_ n / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 59 | 55 58 | eqtrd | |- ( z = <. m , n >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 60 | snfi | |- { n } e. Fin |
|
| 61 | 1 | adantr | |- ( ( ph /\ n e. C ) -> A e. Fin ) |
| 62 | 47 46 | opelcnv | |- ( <. m , n >. e. `' U_ k e. C ( { k } X. D ) <-> <. n , m >. e. U_ k e. C ( { k } X. D ) ) |
| 63 | 37 40 | opeliunxp2f | |- ( <. n , m >. e. U_ k e. C ( { k } X. D ) <-> ( n e. C /\ m e. [_ n / k ]_ D ) ) |
| 64 | 62 63 | sylbbr | |- ( ( n e. C /\ m e. [_ n / k ]_ D ) -> <. m , n >. e. `' U_ k e. C ( { k } X. D ) ) |
| 65 | 64 | adantl | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> <. m , n >. e. `' U_ k e. C ( { k } X. D ) ) |
| 66 | 26 | adantr | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
| 67 | 65 66 | eleqtrrd | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> <. m , n >. e. U_ j e. A ( { j } X. B ) ) |
| 68 | eliun | |- ( <. m , n >. e. U_ j e. A ( { j } X. B ) <-> E. j e. A <. m , n >. e. ( { j } X. B ) ) |
|
| 69 | 67 68 | sylib | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> E. j e. A <. m , n >. e. ( { j } X. B ) ) |
| 70 | simpr | |- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> <. m , n >. e. ( { j } X. B ) ) |
|
| 71 | opelxp | |- ( <. m , n >. e. ( { j } X. B ) <-> ( m e. { j } /\ n e. B ) ) |
|
| 72 | 70 71 | sylib | |- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> ( m e. { j } /\ n e. B ) ) |
| 73 | 72 | simpld | |- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> m e. { j } ) |
| 74 | elsni | |- ( m e. { j } -> m = j ) |
|
| 75 | 73 74 | syl | |- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> m = j ) |
| 76 | simpl | |- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> j e. A ) |
|
| 77 | 75 76 | eqeltrd | |- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> m e. A ) |
| 78 | 77 | rexlimiva | |- ( E. j e. A <. m , n >. e. ( { j } X. B ) -> m e. A ) |
| 79 | 69 78 | syl | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> m e. A ) |
| 80 | 79 | expr | |- ( ( ph /\ n e. C ) -> ( m e. [_ n / k ]_ D -> m e. A ) ) |
| 81 | 80 | ssrdv | |- ( ( ph /\ n e. C ) -> [_ n / k ]_ D C_ A ) |
| 82 | 61 81 | ssfid | |- ( ( ph /\ n e. C ) -> [_ n / k ]_ D e. Fin ) |
| 83 | xpfi | |- ( ( { n } e. Fin /\ [_ n / k ]_ D e. Fin ) -> ( { n } X. [_ n / k ]_ D ) e. Fin ) |
|
| 84 | 60 82 83 | sylancr | |- ( ( ph /\ n e. C ) -> ( { n } X. [_ n / k ]_ D ) e. Fin ) |
| 85 | 84 | ralrimiva | |- ( ph -> A. n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) |
| 86 | iunfi | |- ( ( C e. Fin /\ A. n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) -> U_ n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) |
|
| 87 | 2 85 86 | syl2anc | |- ( ph -> U_ n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) |
| 88 | reliun | |- ( Rel U_ n e. C ( { n } X. [_ n / k ]_ D ) <-> A. n e. C Rel ( { n } X. [_ n / k ]_ D ) ) |
|
| 89 | relxp | |- Rel ( { n } X. [_ n / k ]_ D ) |
|
| 90 | 89 | a1i | |- ( n e. C -> Rel ( { n } X. [_ n / k ]_ D ) ) |
| 91 | 88 90 | mprgbir | |- Rel U_ n e. C ( { n } X. [_ n / k ]_ D ) |
| 92 | 91 | a1i | |- ( ph -> Rel U_ n e. C ( { n } X. [_ n / k ]_ D ) ) |
| 93 | csbeq1 | |- ( m = ( 2nd ` w ) -> [_ m / j ]_ E = [_ ( 2nd ` w ) / j ]_ E ) |
|
| 94 | 93 | csbeq2dv | |- ( m = ( 2nd ` w ) -> [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 95 | 94 | eleq1d | |- ( m = ( 2nd ` w ) -> ( [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) ) |
| 96 | csbeq1 | |- ( n = ( 1st ` w ) -> [_ n / k ]_ D = [_ ( 1st ` w ) / k ]_ D ) |
|
| 97 | csbeq1 | |- ( n = ( 1st ` w ) -> [_ n / k ]_ [_ m / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E ) |
|
| 98 | 97 | eleq1d | |- ( n = ( 1st ` w ) -> ( [_ n / k ]_ [_ m / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC ) ) |
| 99 | 96 98 | raleqbidv | |- ( n = ( 1st ` w ) -> ( A. m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E e. CC <-> A. m e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC ) ) |
| 100 | simpl | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> ph ) |
|
| 101 | 29 | nfcri | |- F/ j n e. [_ m / j ]_ B |
| 102 | 74 | equcomd | |- ( m e. { j } -> j = m ) |
| 103 | 102 32 | syl | |- ( m e. { j } -> B = [_ m / j ]_ B ) |
| 104 | 103 | eleq2d | |- ( m e. { j } -> ( n e. B <-> n e. [_ m / j ]_ B ) ) |
| 105 | 104 | biimpa | |- ( ( m e. { j } /\ n e. B ) -> n e. [_ m / j ]_ B ) |
| 106 | 71 105 | sylbi | |- ( <. m , n >. e. ( { j } X. B ) -> n e. [_ m / j ]_ B ) |
| 107 | 106 | a1i | |- ( j e. A -> ( <. m , n >. e. ( { j } X. B ) -> n e. [_ m / j ]_ B ) ) |
| 108 | 101 107 | rexlimi | |- ( E. j e. A <. m , n >. e. ( { j } X. B ) -> n e. [_ m / j ]_ B ) |
| 109 | 69 108 | syl | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> n e. [_ m / j ]_ B ) |
| 110 | 5 | ralrimivva | |- ( ph -> A. j e. A A. k e. B E e. CC ) |
| 111 | nfcsb1v | |- F/_ j [_ m / j ]_ E |
|
| 112 | 111 | nfel1 | |- F/ j [_ m / j ]_ E e. CC |
| 113 | 29 112 | nfralw | |- F/ j A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC |
| 114 | csbeq1a | |- ( j = m -> E = [_ m / j ]_ E ) |
|
| 115 | 114 | eleq1d | |- ( j = m -> ( E e. CC <-> [_ m / j ]_ E e. CC ) ) |
| 116 | 32 115 | raleqbidv | |- ( j = m -> ( A. k e. B E e. CC <-> A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC ) ) |
| 117 | 113 116 | rspc | |- ( m e. A -> ( A. j e. A A. k e. B E e. CC -> A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC ) ) |
| 118 | 110 117 | mpan9 | |- ( ( ph /\ m e. A ) -> A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC ) |
| 119 | nfcsb1v | |- F/_ k [_ n / k ]_ [_ m / j ]_ E |
|
| 120 | 119 | nfel1 | |- F/ k [_ n / k ]_ [_ m / j ]_ E e. CC |
| 121 | csbeq1a | |- ( k = n -> [_ m / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
|
| 122 | 121 | eleq1d | |- ( k = n -> ( [_ m / j ]_ E e. CC <-> [_ n / k ]_ [_ m / j ]_ E e. CC ) ) |
| 123 | 120 122 | rspc | |- ( n e. [_ m / j ]_ B -> ( A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC -> [_ n / k ]_ [_ m / j ]_ E e. CC ) ) |
| 124 | 118 123 | syl5com | |- ( ( ph /\ m e. A ) -> ( n e. [_ m / j ]_ B -> [_ n / k ]_ [_ m / j ]_ E e. CC ) ) |
| 125 | 124 | impr | |- ( ( ph /\ ( m e. A /\ n e. [_ m / j ]_ B ) ) -> [_ n / k ]_ [_ m / j ]_ E e. CC ) |
| 126 | 100 79 109 125 | syl12anc | |- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> [_ n / k ]_ [_ m / j ]_ E e. CC ) |
| 127 | 126 | ralrimivva | |- ( ph -> A. n e. C A. m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E e. CC ) |
| 128 | 127 | adantr | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> A. n e. C A. m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E e. CC ) |
| 129 | simpr | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) |
|
| 130 | eliun | |- ( w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) <-> E. n e. C w e. ( { n } X. [_ n / k ]_ D ) ) |
|
| 131 | 129 130 | sylib | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> E. n e. C w e. ( { n } X. [_ n / k ]_ D ) ) |
| 132 | xp1st | |- ( w e. ( { n } X. [_ n / k ]_ D ) -> ( 1st ` w ) e. { n } ) |
|
| 133 | 132 | adantl | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) e. { n } ) |
| 134 | elsni | |- ( ( 1st ` w ) e. { n } -> ( 1st ` w ) = n ) |
|
| 135 | 133 134 | syl | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) = n ) |
| 136 | simpl | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> n e. C ) |
|
| 137 | 135 136 | eqeltrd | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
| 138 | 137 | rexlimiva | |- ( E. n e. C w e. ( { n } X. [_ n / k ]_ D ) -> ( 1st ` w ) e. C ) |
| 139 | 131 138 | syl | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
| 140 | 99 128 139 | rspcdva | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> A. m e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC ) |
| 141 | xp2nd | |- ( w e. ( { n } X. [_ n / k ]_ D ) -> ( 2nd ` w ) e. [_ n / k ]_ D ) |
|
| 142 | 141 | adantl | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 2nd ` w ) e. [_ n / k ]_ D ) |
| 143 | 135 | csbeq1d | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ D = [_ n / k ]_ D ) |
| 144 | 142 143 | eleqtrrd | |- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
| 145 | 144 | rexlimiva | |- ( E. n e. C w e. ( { n } X. [_ n / k ]_ D ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
| 146 | 131 145 | syl | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
| 147 | 95 140 146 | rspcdva | |- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) |
| 148 | 53 59 87 92 147 | fsumcnv | |- ( ph -> sum_ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = sum_ z e. `' U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 149 | 45 148 | eqtr4d | |- ( ph -> sum_ z e. U_ m e. A ( { m } X. [_ m / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = sum_ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 150 | 3 | ralrimiva | |- ( ph -> A. j e. A B e. Fin ) |
| 151 | 29 | nfel1 | |- F/ j [_ m / j ]_ B e. Fin |
| 152 | 32 | eleq1d | |- ( j = m -> ( B e. Fin <-> [_ m / j ]_ B e. Fin ) ) |
| 153 | 151 152 | rspc | |- ( m e. A -> ( A. j e. A B e. Fin -> [_ m / j ]_ B e. Fin ) ) |
| 154 | 150 153 | mpan9 | |- ( ( ph /\ m e. A ) -> [_ m / j ]_ B e. Fin ) |
| 155 | 59 1 154 125 | fsum2d | |- ( ph -> sum_ m e. A sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E = sum_ z e. U_ m e. A ( { m } X. [_ m / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 156 | 53 2 82 126 | fsum2d | |- ( ph -> sum_ n e. C sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E = sum_ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 157 | 149 155 156 | 3eqtr4d | |- ( ph -> sum_ m e. A sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E = sum_ n e. C sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E ) |
| 158 | csbeq1a | |- ( k = n -> E = [_ n / k ]_ E ) |
|
| 159 | nfcv | |- F/_ n E |
|
| 160 | nfcsb1v | |- F/_ k [_ n / k ]_ E |
|
| 161 | 158 159 160 | cbvsum | |- sum_ k e. B E = sum_ n e. B [_ n / k ]_ E |
| 162 | 114 | csbeq2dv | |- ( j = m -> [_ n / k ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 163 | 162 | adantr | |- ( ( j = m /\ n e. B ) -> [_ n / k ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 164 | 32 163 | sumeq12dv | |- ( j = m -> sum_ n e. B [_ n / k ]_ E = sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E ) |
| 165 | 161 164 | eqtrid | |- ( j = m -> sum_ k e. B E = sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E ) |
| 166 | nfcv | |- F/_ m sum_ k e. B E |
|
| 167 | nfcv | |- F/_ j n |
|
| 168 | 167 111 | nfcsbw | |- F/_ j [_ n / k ]_ [_ m / j ]_ E |
| 169 | 29 168 | nfsum | |- F/_ j sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E |
| 170 | 165 166 169 | cbvsum | |- sum_ j e. A sum_ k e. B E = sum_ m e. A sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E |
| 171 | nfcv | |- F/_ m E |
|
| 172 | 114 171 111 | cbvsum | |- sum_ j e. D E = sum_ m e. D [_ m / j ]_ E |
| 173 | 121 | adantr | |- ( ( k = n /\ m e. D ) -> [_ m / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
| 174 | 40 173 | sumeq12dv | |- ( k = n -> sum_ m e. D [_ m / j ]_ E = sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E ) |
| 175 | 172 174 | eqtrid | |- ( k = n -> sum_ j e. D E = sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E ) |
| 176 | nfcv | |- F/_ n sum_ j e. D E |
|
| 177 | 37 119 | nfsum | |- F/_ k sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E |
| 178 | 175 176 177 | cbvsum | |- sum_ k e. C sum_ j e. D E = sum_ n e. C sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E |
| 179 | 157 170 178 | 3eqtr4g | |- ( ph -> sum_ j e. A sum_ k e. B E = sum_ k e. C sum_ j e. D E ) |