This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcnv.1 | |- ( x = <. j , k >. -> B = D ) |
|
| fsumcnv.2 | |- ( y = <. k , j >. -> C = D ) |
||
| fsumcnv.3 | |- ( ph -> A e. Fin ) |
||
| fsumcnv.4 | |- ( ph -> Rel A ) |
||
| fsumcnv.5 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
| Assertion | fsumcnv | |- ( ph -> sum_ x e. A B = sum_ y e. `' A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcnv.1 | |- ( x = <. j , k >. -> B = D ) |
|
| 2 | fsumcnv.2 | |- ( y = <. k , j >. -> C = D ) |
|
| 3 | fsumcnv.3 | |- ( ph -> A e. Fin ) |
|
| 4 | fsumcnv.4 | |- ( ph -> Rel A ) |
|
| 5 | fsumcnv.5 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 6 | csbeq1a | |- ( x = <. ( 2nd ` y ) , ( 1st ` y ) >. -> B = [_ <. ( 2nd ` y ) , ( 1st ` y ) >. / x ]_ B ) |
|
| 7 | fvex | |- ( 2nd ` y ) e. _V |
|
| 8 | fvex | |- ( 1st ` y ) e. _V |
|
| 9 | opex | |- <. j , k >. e. _V |
|
| 10 | 9 1 | csbie | |- [_ <. j , k >. / x ]_ B = D |
| 11 | opeq12 | |- ( ( j = ( 2nd ` y ) /\ k = ( 1st ` y ) ) -> <. j , k >. = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
|
| 12 | 11 | csbeq1d | |- ( ( j = ( 2nd ` y ) /\ k = ( 1st ` y ) ) -> [_ <. j , k >. / x ]_ B = [_ <. ( 2nd ` y ) , ( 1st ` y ) >. / x ]_ B ) |
| 13 | 10 12 | eqtr3id | |- ( ( j = ( 2nd ` y ) /\ k = ( 1st ` y ) ) -> D = [_ <. ( 2nd ` y ) , ( 1st ` y ) >. / x ]_ B ) |
| 14 | 7 8 13 | csbie2 | |- [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / k ]_ D = [_ <. ( 2nd ` y ) , ( 1st ` y ) >. / x ]_ B |
| 15 | 6 14 | eqtr4di | |- ( x = <. ( 2nd ` y ) , ( 1st ` y ) >. -> B = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / k ]_ D ) |
| 16 | cnvfi | |- ( A e. Fin -> `' A e. Fin ) |
|
| 17 | 3 16 | syl | |- ( ph -> `' A e. Fin ) |
| 18 | relcnv | |- Rel `' A |
|
| 19 | cnvf1o | |- ( Rel `' A -> ( z e. `' A |-> U. `' { z } ) : `' A -1-1-onto-> `' `' A ) |
|
| 20 | 18 19 | ax-mp | |- ( z e. `' A |-> U. `' { z } ) : `' A -1-1-onto-> `' `' A |
| 21 | dfrel2 | |- ( Rel A <-> `' `' A = A ) |
|
| 22 | 4 21 | sylib | |- ( ph -> `' `' A = A ) |
| 23 | 22 | f1oeq3d | |- ( ph -> ( ( z e. `' A |-> U. `' { z } ) : `' A -1-1-onto-> `' `' A <-> ( z e. `' A |-> U. `' { z } ) : `' A -1-1-onto-> A ) ) |
| 24 | 20 23 | mpbii | |- ( ph -> ( z e. `' A |-> U. `' { z } ) : `' A -1-1-onto-> A ) |
| 25 | 1st2nd | |- ( ( Rel `' A /\ y e. `' A ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 26 | 18 25 | mpan | |- ( y e. `' A -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 27 | 26 | fveq2d | |- ( y e. `' A -> ( ( z e. `' A |-> U. `' { z } ) ` y ) = ( ( z e. `' A |-> U. `' { z } ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 28 | id | |- ( y e. `' A -> y e. `' A ) |
|
| 29 | 26 28 | eqeltrrd | |- ( y e. `' A -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. `' A ) |
| 30 | sneq | |- ( z = <. ( 1st ` y ) , ( 2nd ` y ) >. -> { z } = { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) |
|
| 31 | 30 | cnveqd | |- ( z = <. ( 1st ` y ) , ( 2nd ` y ) >. -> `' { z } = `' { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) |
| 32 | 31 | unieqd | |- ( z = <. ( 1st ` y ) , ( 2nd ` y ) >. -> U. `' { z } = U. `' { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) |
| 33 | opswap | |- U. `' { <. ( 1st ` y ) , ( 2nd ` y ) >. } = <. ( 2nd ` y ) , ( 1st ` y ) >. |
|
| 34 | 32 33 | eqtrdi | |- ( z = <. ( 1st ` y ) , ( 2nd ` y ) >. -> U. `' { z } = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 35 | eqid | |- ( z e. `' A |-> U. `' { z } ) = ( z e. `' A |-> U. `' { z } ) |
|
| 36 | opex | |- <. ( 2nd ` y ) , ( 1st ` y ) >. e. _V |
|
| 37 | 34 35 36 | fvmpt | |- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. `' A -> ( ( z e. `' A |-> U. `' { z } ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 38 | 29 37 | syl | |- ( y e. `' A -> ( ( z e. `' A |-> U. `' { z } ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 39 | 27 38 | eqtrd | |- ( y e. `' A -> ( ( z e. `' A |-> U. `' { z } ) ` y ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 40 | 39 | adantl | |- ( ( ph /\ y e. `' A ) -> ( ( z e. `' A |-> U. `' { z } ) ` y ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 41 | 15 17 24 40 5 | fsumf1o | |- ( ph -> sum_ x e. A B = sum_ y e. `' A [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / k ]_ D ) |
| 42 | csbeq1a | |- ( y = <. ( 1st ` y ) , ( 2nd ` y ) >. -> C = [_ <. ( 1st ` y ) , ( 2nd ` y ) >. / y ]_ C ) |
|
| 43 | 26 42 | syl | |- ( y e. `' A -> C = [_ <. ( 1st ` y ) , ( 2nd ` y ) >. / y ]_ C ) |
| 44 | opex | |- <. k , j >. e. _V |
|
| 45 | 44 2 | csbie | |- [_ <. k , j >. / y ]_ C = D |
| 46 | opeq12 | |- ( ( k = ( 1st ` y ) /\ j = ( 2nd ` y ) ) -> <. k , j >. = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 47 | 46 | ancoms | |- ( ( j = ( 2nd ` y ) /\ k = ( 1st ` y ) ) -> <. k , j >. = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 48 | 47 | csbeq1d | |- ( ( j = ( 2nd ` y ) /\ k = ( 1st ` y ) ) -> [_ <. k , j >. / y ]_ C = [_ <. ( 1st ` y ) , ( 2nd ` y ) >. / y ]_ C ) |
| 49 | 45 48 | eqtr3id | |- ( ( j = ( 2nd ` y ) /\ k = ( 1st ` y ) ) -> D = [_ <. ( 1st ` y ) , ( 2nd ` y ) >. / y ]_ C ) |
| 50 | 7 8 49 | csbie2 | |- [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / k ]_ D = [_ <. ( 1st ` y ) , ( 2nd ` y ) >. / y ]_ C |
| 51 | 43 50 | eqtr4di | |- ( y e. `' A -> C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / k ]_ D ) |
| 52 | 51 | sumeq2i | |- sum_ y e. `' A C = sum_ y e. `' A [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / k ]_ D |
| 53 | 41 52 | eqtr4di | |- ( ph -> sum_ x e. A B = sum_ y e. `' A C ) |