This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for E instead of distinct variable conditions as in opeliunxp2 . (Contributed by AV, 25-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeliunxp2f.f | |- F/_ x E |
|
| opeliunxp2f.e | |- ( x = C -> B = E ) |
||
| Assertion | opeliunxp2f | |- ( <. C , D >. e. U_ x e. A ( { x } X. B ) <-> ( C e. A /\ D e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeliunxp2f.f | |- F/_ x E |
|
| 2 | opeliunxp2f.e | |- ( x = C -> B = E ) |
|
| 3 | df-br | |- ( C U_ x e. A ( { x } X. B ) D <-> <. C , D >. e. U_ x e. A ( { x } X. B ) ) |
|
| 4 | relxp | |- Rel ( { x } X. B ) |
|
| 5 | 4 | rgenw | |- A. x e. A Rel ( { x } X. B ) |
| 6 | reliun | |- ( Rel U_ x e. A ( { x } X. B ) <-> A. x e. A Rel ( { x } X. B ) ) |
|
| 7 | 5 6 | mpbir | |- Rel U_ x e. A ( { x } X. B ) |
| 8 | 7 | brrelex1i | |- ( C U_ x e. A ( { x } X. B ) D -> C e. _V ) |
| 9 | 3 8 | sylbir | |- ( <. C , D >. e. U_ x e. A ( { x } X. B ) -> C e. _V ) |
| 10 | elex | |- ( C e. A -> C e. _V ) |
|
| 11 | 10 | adantr | |- ( ( C e. A /\ D e. E ) -> C e. _V ) |
| 12 | nfiu1 | |- F/_ x U_ x e. A ( { x } X. B ) |
|
| 13 | 12 | nfel2 | |- F/ x <. C , D >. e. U_ x e. A ( { x } X. B ) |
| 14 | nfv | |- F/ x C e. A |
|
| 15 | 1 | nfel2 | |- F/ x D e. E |
| 16 | 14 15 | nfan | |- F/ x ( C e. A /\ D e. E ) |
| 17 | 13 16 | nfbi | |- F/ x ( <. C , D >. e. U_ x e. A ( { x } X. B ) <-> ( C e. A /\ D e. E ) ) |
| 18 | opeq1 | |- ( x = C -> <. x , D >. = <. C , D >. ) |
|
| 19 | 18 | eleq1d | |- ( x = C -> ( <. x , D >. e. U_ x e. A ( { x } X. B ) <-> <. C , D >. e. U_ x e. A ( { x } X. B ) ) ) |
| 20 | eleq1 | |- ( x = C -> ( x e. A <-> C e. A ) ) |
|
| 21 | 2 | eleq2d | |- ( x = C -> ( D e. B <-> D e. E ) ) |
| 22 | 20 21 | anbi12d | |- ( x = C -> ( ( x e. A /\ D e. B ) <-> ( C e. A /\ D e. E ) ) ) |
| 23 | 19 22 | bibi12d | |- ( x = C -> ( ( <. x , D >. e. U_ x e. A ( { x } X. B ) <-> ( x e. A /\ D e. B ) ) <-> ( <. C , D >. e. U_ x e. A ( { x } X. B ) <-> ( C e. A /\ D e. E ) ) ) ) |
| 24 | opeliunxp | |- ( <. x , D >. e. U_ x e. A ( { x } X. B ) <-> ( x e. A /\ D e. B ) ) |
|
| 25 | 17 23 24 | vtoclg1f | |- ( C e. _V -> ( <. C , D >. e. U_ x e. A ( { x } X. B ) <-> ( C e. A /\ D e. E ) ) ) |
| 26 | 9 11 25 | pm5.21nii | |- ( <. C , D >. e. U_ x e. A ( { x } X. B ) <-> ( C e. A /\ D e. E ) ) |