This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom F = A when given the right S . Specifically, we prove that there can be no R -minimal element of ( A \ dom F ) . (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem11.2 | |- F = frecs ( R , A , G ) |
||
| frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
||
| frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
||
| frrlem12.5 | |- ( ph -> R Fr A ) |
||
| frrlem12.6 | |- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
||
| frrlem12.7 | |- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
||
| frrlem13.8 | |- ( ( ph /\ z e. A ) -> S e. _V ) |
||
| frrlem13.9 | |- ( ( ph /\ z e. A ) -> S C_ A ) |
||
| frrlem14.10 | |- ( ( ph /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
||
| Assertion | frrlem14 | |- ( ph -> dom F = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem11.2 | |- F = frecs ( R , A , G ) |
|
| 3 | frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
|
| 4 | frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 5 | frrlem12.5 | |- ( ph -> R Fr A ) |
|
| 6 | frrlem12.6 | |- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
|
| 7 | frrlem12.7 | |- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
|
| 8 | frrlem13.8 | |- ( ( ph /\ z e. A ) -> S e. _V ) |
|
| 9 | frrlem13.9 | |- ( ( ph /\ z e. A ) -> S C_ A ) |
|
| 10 | frrlem14.10 | |- ( ( ph /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
|
| 11 | 1 2 | frrlem7 | |- dom F C_ A |
| 12 | 11 | a1i | |- ( ph -> dom F C_ A ) |
| 13 | eldifn | |- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ z e. ( A \ dom F ) ) -> -. z e. dom F ) |
| 15 | 1 2 3 4 5 6 7 8 9 | frrlem13 | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. B ) |
| 16 | elssuni | |- ( C e. B -> C C_ U. B ) |
|
| 17 | 15 16 | syl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C C_ U. B ) |
| 18 | 1 2 | frrlem5 | |- F = U. B |
| 19 | 17 18 | sseqtrrdi | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C C_ F ) |
| 20 | dmss | |- ( C C_ F -> dom C C_ dom F ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> dom C C_ dom F ) |
| 22 | ssun2 | |- { z } C_ ( dom ( F |` S ) u. { z } ) |
|
| 23 | vsnid | |- z e. { z } |
|
| 24 | 22 23 | sselii | |- z e. ( dom ( F |` S ) u. { z } ) |
| 25 | 4 | dmeqi | |- dom C = dom ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 26 | dmun | |- dom ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom ( F |` S ) u. dom { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 27 | ovex | |- ( z G ( F |` Pred ( R , A , z ) ) ) e. _V |
|
| 28 | 27 | dmsnop | |- dom { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } = { z } |
| 29 | 28 | uneq2i | |- ( dom ( F |` S ) u. dom { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom ( F |` S ) u. { z } ) |
| 30 | 25 26 29 | 3eqtri | |- dom C = ( dom ( F |` S ) u. { z } ) |
| 31 | 24 30 | eleqtrri | |- z e. dom C |
| 32 | 31 | a1i | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> z e. dom C ) |
| 33 | 21 32 | sseldd | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> z e. dom F ) |
| 34 | 33 | expr | |- ( ( ph /\ z e. ( A \ dom F ) ) -> ( Pred ( R , ( A \ dom F ) , z ) = (/) -> z e. dom F ) ) |
| 35 | 14 34 | mtod | |- ( ( ph /\ z e. ( A \ dom F ) ) -> -. Pred ( R , ( A \ dom F ) , z ) = (/) ) |
| 36 | 35 | nrexdv | |- ( ph -> -. E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
| 37 | df-ne | |- ( ( A \ dom F ) =/= (/) <-> -. ( A \ dom F ) = (/) ) |
|
| 38 | 37 10 | sylan2br | |- ( ( ph /\ -. ( A \ dom F ) = (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
| 39 | 38 | ex | |- ( ph -> ( -. ( A \ dom F ) = (/) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) ) |
| 40 | 36 39 | mt3d | |- ( ph -> ( A \ dom F ) = (/) ) |
| 41 | ssdif0 | |- ( A C_ dom F <-> ( A \ dom F ) = (/) ) |
|
| 42 | 40 41 | sylibr | |- ( ph -> A C_ dom F ) |
| 43 | 12 42 | eqssd | |- ( ph -> dom F = A ) |