This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpval.m | |- G = ( freeGrp ` I ) |
|
| frgpval.b | |- M = ( freeMnd ` ( I X. 2o ) ) |
||
| frgpval.r | |- .~ = ( ~FG ` I ) |
||
| frgpcpbl.p | |- .+ = ( +g ` M ) |
||
| Assertion | frgpcpbl | |- ( ( A .~ C /\ B .~ D ) -> ( A .+ B ) .~ ( C .+ D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpval.m | |- G = ( freeGrp ` I ) |
|
| 2 | frgpval.b | |- M = ( freeMnd ` ( I X. 2o ) ) |
|
| 3 | frgpval.r | |- .~ = ( ~FG ` I ) |
|
| 4 | frgpcpbl.p | |- .+ = ( +g ` M ) |
|
| 5 | eqid | |- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
|
| 6 | eqid | |- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 7 | eqid | |- ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) = ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) |
|
| 8 | eqid | |- ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) = ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) |
|
| 9 | eqid | |- ( m e. { t e. ( Word ( _I ` Word ( I X. 2o ) ) \ { (/) } ) | ( ( t ` 0 ) e. ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) = ( m e. { t e. ( Word ( _I ` Word ( I X. 2o ) ) \ { (/) } ) | ( ( t ` 0 ) e. ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 10 | 5 3 6 7 8 9 | efgcpbl2 | |- ( ( A .~ C /\ B .~ D ) -> ( A ++ B ) .~ ( C ++ D ) ) |
| 11 | 5 3 | efger | |- .~ Er ( _I ` Word ( I X. 2o ) ) |
| 12 | 11 | a1i | |- ( ( A .~ C /\ B .~ D ) -> .~ Er ( _I ` Word ( I X. 2o ) ) ) |
| 13 | simpl | |- ( ( A .~ C /\ B .~ D ) -> A .~ C ) |
|
| 14 | 12 13 | ercl | |- ( ( A .~ C /\ B .~ D ) -> A e. ( _I ` Word ( I X. 2o ) ) ) |
| 15 | 5 | efgrcl | |- ( A e. ( _I ` Word ( I X. 2o ) ) -> ( I e. _V /\ ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) ) |
| 16 | 14 15 | syl | |- ( ( A .~ C /\ B .~ D ) -> ( I e. _V /\ ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) ) |
| 17 | 16 | simprd | |- ( ( A .~ C /\ B .~ D ) -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 18 | 16 | simpld | |- ( ( A .~ C /\ B .~ D ) -> I e. _V ) |
| 19 | 2on | |- 2o e. On |
|
| 20 | xpexg | |- ( ( I e. _V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 21 | 18 19 20 | sylancl | |- ( ( A .~ C /\ B .~ D ) -> ( I X. 2o ) e. _V ) |
| 22 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 23 | 2 22 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` M ) = Word ( I X. 2o ) ) |
| 24 | 21 23 | syl | |- ( ( A .~ C /\ B .~ D ) -> ( Base ` M ) = Word ( I X. 2o ) ) |
| 25 | 17 24 | eqtr4d | |- ( ( A .~ C /\ B .~ D ) -> ( _I ` Word ( I X. 2o ) ) = ( Base ` M ) ) |
| 26 | 14 25 | eleqtrd | |- ( ( A .~ C /\ B .~ D ) -> A e. ( Base ` M ) ) |
| 27 | simpr | |- ( ( A .~ C /\ B .~ D ) -> B .~ D ) |
|
| 28 | 12 27 | ercl | |- ( ( A .~ C /\ B .~ D ) -> B e. ( _I ` Word ( I X. 2o ) ) ) |
| 29 | 28 25 | eleqtrd | |- ( ( A .~ C /\ B .~ D ) -> B e. ( Base ` M ) ) |
| 30 | 2 22 4 | frmdadd | |- ( ( A e. ( Base ` M ) /\ B e. ( Base ` M ) ) -> ( A .+ B ) = ( A ++ B ) ) |
| 31 | 26 29 30 | syl2anc | |- ( ( A .~ C /\ B .~ D ) -> ( A .+ B ) = ( A ++ B ) ) |
| 32 | 12 13 | ercl2 | |- ( ( A .~ C /\ B .~ D ) -> C e. ( _I ` Word ( I X. 2o ) ) ) |
| 33 | 32 25 | eleqtrd | |- ( ( A .~ C /\ B .~ D ) -> C e. ( Base ` M ) ) |
| 34 | 12 27 | ercl2 | |- ( ( A .~ C /\ B .~ D ) -> D e. ( _I ` Word ( I X. 2o ) ) ) |
| 35 | 34 25 | eleqtrd | |- ( ( A .~ C /\ B .~ D ) -> D e. ( Base ` M ) ) |
| 36 | 2 22 4 | frmdadd | |- ( ( C e. ( Base ` M ) /\ D e. ( Base ` M ) ) -> ( C .+ D ) = ( C ++ D ) ) |
| 37 | 33 35 36 | syl2anc | |- ( ( A .~ C /\ B .~ D ) -> ( C .+ D ) = ( C ++ D ) ) |
| 38 | 10 31 37 | 3brtr4d | |- ( ( A .~ C /\ B .~ D ) -> ( A .+ B ) .~ ( C .+ D ) ) |