This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp2.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusgrp2.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusgrp2.p | |- ( ph -> .+ = ( +g ` R ) ) |
||
| qusgrp2.r | |- ( ph -> .~ Er V ) |
||
| qusgrp2.x | |- ( ph -> R e. X ) |
||
| qusgrp2.e | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
||
| qusgrp2.1 | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
||
| qusgrp2.2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) .~ ( x .+ ( y .+ z ) ) ) |
||
| qusgrp2.3 | |- ( ph -> .0. e. V ) |
||
| qusgrp2.4 | |- ( ( ph /\ x e. V ) -> ( .0. .+ x ) .~ x ) |
||
| qusgrp2.5 | |- ( ( ph /\ x e. V ) -> N e. V ) |
||
| qusgrp2.6 | |- ( ( ph /\ x e. V ) -> ( N .+ x ) .~ .0. ) |
||
| Assertion | qusgrp2 | |- ( ph -> ( U e. Grp /\ [ .0. ] .~ = ( 0g ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp2.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusgrp2.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusgrp2.p | |- ( ph -> .+ = ( +g ` R ) ) |
|
| 4 | qusgrp2.r | |- ( ph -> .~ Er V ) |
|
| 5 | qusgrp2.x | |- ( ph -> R e. X ) |
|
| 6 | qusgrp2.e | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
|
| 7 | qusgrp2.1 | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
|
| 8 | qusgrp2.2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) .~ ( x .+ ( y .+ z ) ) ) |
|
| 9 | qusgrp2.3 | |- ( ph -> .0. e. V ) |
|
| 10 | qusgrp2.4 | |- ( ( ph /\ x e. V ) -> ( .0. .+ x ) .~ x ) |
|
| 11 | qusgrp2.5 | |- ( ( ph /\ x e. V ) -> N e. V ) |
|
| 12 | qusgrp2.6 | |- ( ( ph /\ x e. V ) -> ( N .+ x ) .~ .0. ) |
|
| 13 | eqid | |- ( u e. V |-> [ u ] .~ ) = ( u e. V |-> [ u ] .~ ) |
|
| 14 | fvex | |- ( Base ` R ) e. _V |
|
| 15 | 2 14 | eqeltrdi | |- ( ph -> V e. _V ) |
| 16 | erex | |- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
|
| 17 | 4 15 16 | sylc | |- ( ph -> .~ e. _V ) |
| 18 | 1 2 13 17 5 | qusval | |- ( ph -> U = ( ( u e. V |-> [ u ] .~ ) "s R ) ) |
| 19 | 1 2 13 17 5 | quslem | |- ( ph -> ( u e. V |-> [ u ] .~ ) : V -onto-> ( V /. .~ ) ) |
| 20 | 7 | 3expb | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 21 | 4 15 13 20 6 | ercpbl | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .+ b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .+ q ) ) ) ) |
| 22 | 4 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .~ Er V ) |
| 23 | 22 8 | erthi | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> [ ( ( x .+ y ) .+ z ) ] .~ = [ ( x .+ ( y .+ z ) ) ] .~ ) |
| 24 | 15 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V e. _V ) |
| 25 | 22 24 13 | divsfval | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( ( x .+ y ) .+ z ) ) = [ ( ( x .+ y ) .+ z ) ] .~ ) |
| 26 | 22 24 13 | divsfval | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( x .+ ( y .+ z ) ) ) = [ ( x .+ ( y .+ z ) ) ] .~ ) |
| 27 | 23 25 26 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( ( x .+ y ) .+ z ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( x .+ ( y .+ z ) ) ) ) |
| 28 | 4 | adantr | |- ( ( ph /\ x e. V ) -> .~ Er V ) |
| 29 | 28 10 | erthi | |- ( ( ph /\ x e. V ) -> [ ( .0. .+ x ) ] .~ = [ x ] .~ ) |
| 30 | 15 | adantr | |- ( ( ph /\ x e. V ) -> V e. _V ) |
| 31 | 28 30 13 | divsfval | |- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( .0. .+ x ) ) = [ ( .0. .+ x ) ] .~ ) |
| 32 | 28 30 13 | divsfval | |- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` x ) = [ x ] .~ ) |
| 33 | 29 31 32 | 3eqtr4d | |- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( .0. .+ x ) ) = ( ( u e. V |-> [ u ] .~ ) ` x ) ) |
| 34 | 28 12 | ersym | |- ( ( ph /\ x e. V ) -> .0. .~ ( N .+ x ) ) |
| 35 | 28 34 | erthi | |- ( ( ph /\ x e. V ) -> [ .0. ] .~ = [ ( N .+ x ) ] .~ ) |
| 36 | 28 30 13 | divsfval | |- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` .0. ) = [ .0. ] .~ ) |
| 37 | 28 30 13 | divsfval | |- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( N .+ x ) ) = [ ( N .+ x ) ] .~ ) |
| 38 | 35 36 37 | 3eqtr4rd | |- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( N .+ x ) ) = ( ( u e. V |-> [ u ] .~ ) ` .0. ) ) |
| 39 | 18 2 3 19 21 5 7 27 9 33 11 38 | imasgrp2 | |- ( ph -> ( U e. Grp /\ ( ( u e. V |-> [ u ] .~ ) ` .0. ) = ( 0g ` U ) ) ) |
| 40 | 4 15 13 | divsfval | |- ( ph -> ( ( u e. V |-> [ u ] .~ ) ` .0. ) = [ .0. ] .~ ) |
| 41 | 40 | eqcomd | |- ( ph -> [ .0. ] .~ = ( ( u e. V |-> [ u ] .~ ) ` .0. ) ) |
| 42 | 41 | eqeq1d | |- ( ph -> ( [ .0. ] .~ = ( 0g ` U ) <-> ( ( u e. V |-> [ u ] .~ ) ` .0. ) = ( 0g ` U ) ) ) |
| 43 | 42 | anbi2d | |- ( ph -> ( ( U e. Grp /\ [ .0. ] .~ = ( 0g ` U ) ) <-> ( U e. Grp /\ ( ( u e. V |-> [ u ] .~ ) ` .0. ) = ( 0g ` U ) ) ) ) |
| 44 | 39 43 | mpbird | |- ( ph -> ( U e. Grp /\ [ .0. ] .~ = ( 0g ` U ) ) ) |