This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| Assertion | frmdmnd | |- ( I e. V -> M e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| 2 | eqidd | |- ( I e. V -> ( Base ` M ) = ( Base ` M ) ) |
|
| 3 | eqidd | |- ( I e. V -> ( +g ` M ) = ( +g ` M ) ) |
|
| 4 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 5 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 6 | 1 4 5 | frmdadd | |- ( ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( x ++ y ) ) |
| 7 | 1 4 | frmdelbas | |- ( x e. ( Base ` M ) -> x e. Word I ) |
| 8 | 1 4 | frmdelbas | |- ( y e. ( Base ` M ) -> y e. Word I ) |
| 9 | ccatcl | |- ( ( x e. Word I /\ y e. Word I ) -> ( x ++ y ) e. Word I ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ++ y ) e. Word I ) |
| 11 | 6 10 | eqeltrd | |- ( ( x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) e. Word I ) |
| 12 | 11 | 3adant1 | |- ( ( I e. V /\ x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) e. Word I ) |
| 13 | 1 4 | frmdbas | |- ( I e. V -> ( Base ` M ) = Word I ) |
| 14 | 13 | 3ad2ant1 | |- ( ( I e. V /\ x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( Base ` M ) = Word I ) |
| 15 | 12 14 | eleqtrrd | |- ( ( I e. V /\ x e. ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) e. ( Base ` M ) ) |
| 16 | simpr1 | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> x e. ( Base ` M ) ) |
|
| 17 | 16 7 | syl | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> x e. Word I ) |
| 18 | simpr2 | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> y e. ( Base ` M ) ) |
|
| 19 | 18 8 | syl | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> y e. Word I ) |
| 20 | simpr3 | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> z e. ( Base ` M ) ) |
|
| 21 | 1 4 | frmdelbas | |- ( z e. ( Base ` M ) -> z e. Word I ) |
| 22 | 20 21 | syl | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> z e. Word I ) |
| 23 | ccatass | |- ( ( x e. Word I /\ y e. Word I /\ z e. Word I ) -> ( ( x ++ y ) ++ z ) = ( x ++ ( y ++ z ) ) ) |
|
| 24 | 17 19 22 23 | syl3anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( ( x ++ y ) ++ z ) = ( x ++ ( y ++ z ) ) ) |
| 25 | 16 18 10 | syl2anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( x ++ y ) e. Word I ) |
| 26 | 13 | adantr | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( Base ` M ) = Word I ) |
| 27 | 25 26 | eleqtrrd | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( x ++ y ) e. ( Base ` M ) ) |
| 28 | 1 4 5 | frmdadd | |- ( ( ( x ++ y ) e. ( Base ` M ) /\ z e. ( Base ` M ) ) -> ( ( x ++ y ) ( +g ` M ) z ) = ( ( x ++ y ) ++ z ) ) |
| 29 | 27 20 28 | syl2anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( ( x ++ y ) ( +g ` M ) z ) = ( ( x ++ y ) ++ z ) ) |
| 30 | ccatcl | |- ( ( y e. Word I /\ z e. Word I ) -> ( y ++ z ) e. Word I ) |
|
| 31 | 19 22 30 | syl2anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( y ++ z ) e. Word I ) |
| 32 | 31 26 | eleqtrrd | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( y ++ z ) e. ( Base ` M ) ) |
| 33 | 1 4 5 | frmdadd | |- ( ( x e. ( Base ` M ) /\ ( y ++ z ) e. ( Base ` M ) ) -> ( x ( +g ` M ) ( y ++ z ) ) = ( x ++ ( y ++ z ) ) ) |
| 34 | 16 32 33 | syl2anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( x ( +g ` M ) ( y ++ z ) ) = ( x ++ ( y ++ z ) ) ) |
| 35 | 24 29 34 | 3eqtr4d | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( ( x ++ y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ++ z ) ) ) |
| 36 | 16 18 6 | syl2anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( x ( +g ` M ) y ) = ( x ++ y ) ) |
| 37 | 36 | oveq1d | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( ( x ++ y ) ( +g ` M ) z ) ) |
| 38 | 1 4 5 | frmdadd | |- ( ( y e. ( Base ` M ) /\ z e. ( Base ` M ) ) -> ( y ( +g ` M ) z ) = ( y ++ z ) ) |
| 39 | 18 20 38 | syl2anc | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( y ( +g ` M ) z ) = ( y ++ z ) ) |
| 40 | 39 | oveq2d | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( x ( +g ` M ) ( y ( +g ` M ) z ) ) = ( x ( +g ` M ) ( y ++ z ) ) ) |
| 41 | 35 37 40 | 3eqtr4d | |- ( ( I e. V /\ ( x e. ( Base ` M ) /\ y e. ( Base ` M ) /\ z e. ( Base ` M ) ) ) -> ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) |
| 42 | wrd0 | |- (/) e. Word I |
|
| 43 | 42 13 | eleqtrrid | |- ( I e. V -> (/) e. ( Base ` M ) ) |
| 44 | 1 4 5 | frmdadd | |- ( ( (/) e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = ( (/) ++ x ) ) |
| 45 | 43 44 | sylan | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = ( (/) ++ x ) ) |
| 46 | 7 | adantl | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> x e. Word I ) |
| 47 | ccatlid | |- ( x e. Word I -> ( (/) ++ x ) = x ) |
|
| 48 | 46 47 | syl | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> ( (/) ++ x ) = x ) |
| 49 | 45 48 | eqtrd | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = x ) |
| 50 | 1 4 5 | frmdadd | |- ( ( x e. ( Base ` M ) /\ (/) e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
| 51 | 50 | ancoms | |- ( ( (/) e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
| 52 | 43 51 | sylan | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
| 53 | ccatrid | |- ( x e. Word I -> ( x ++ (/) ) = x ) |
|
| 54 | 46 53 | syl | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> ( x ++ (/) ) = x ) |
| 55 | 52 54 | eqtrd | |- ( ( I e. V /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = x ) |
| 56 | 2 3 15 41 43 49 55 | ismndd | |- ( I e. V -> M e. Mnd ) |