This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prodf1.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | prodf1 | |- ( N e. Z -> ( seq M ( x. , ( Z X. { 1 } ) ) ` N ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodf1.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 3 | 2 | a1i | |- ( N e. Z -> ( 1 x. 1 ) = 1 ) |
| 4 | 1 | eleq2i | |- ( N e. Z <-> N e. ( ZZ>= ` M ) ) |
| 5 | 4 | biimpi | |- ( N e. Z -> N e. ( ZZ>= ` M ) ) |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | elfzuz | |- ( k e. ( M ... N ) -> k e. ( ZZ>= ` M ) ) |
|
| 8 | 7 1 | eleqtrrdi | |- ( k e. ( M ... N ) -> k e. Z ) |
| 9 | 8 | adantl | |- ( ( N e. Z /\ k e. ( M ... N ) ) -> k e. Z ) |
| 10 | fvconst2g | |- ( ( 1 e. CC /\ k e. Z ) -> ( ( Z X. { 1 } ) ` k ) = 1 ) |
|
| 11 | 6 9 10 | sylancr | |- ( ( N e. Z /\ k e. ( M ... N ) ) -> ( ( Z X. { 1 } ) ` k ) = 1 ) |
| 12 | 3 5 11 | seqid3 | |- ( N e. Z -> ( seq M ( x. , ( Z X. { 1 } ) ) ` N ) = 1 ) |