This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prod0 | |- prod_ k e. (/) A = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | id | |- ( 1 e. ZZ -> 1 e. ZZ ) |
|
| 4 | ax-1ne0 | |- 1 =/= 0 |
|
| 5 | 4 | a1i | |- ( 1 e. ZZ -> 1 =/= 0 ) |
| 6 | 2 | prodfclim1 | |- ( 1 e. ZZ -> seq 1 ( x. , ( NN X. { 1 } ) ) ~~> 1 ) |
| 7 | 0ss | |- (/) C_ NN |
|
| 8 | 7 | a1i | |- ( 1 e. ZZ -> (/) C_ NN ) |
| 9 | fvconst2g | |- ( ( 1 e. ZZ /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) = 1 ) |
|
| 10 | noel | |- -. k e. (/) |
|
| 11 | 10 | iffalsei | |- if ( k e. (/) , A , 1 ) = 1 |
| 12 | 9 11 | eqtr4di | |- ( ( 1 e. ZZ /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) = if ( k e. (/) , A , 1 ) ) |
| 13 | 10 | pm2.21i | |- ( k e. (/) -> A e. CC ) |
| 14 | 13 | adantl | |- ( ( 1 e. ZZ /\ k e. (/) ) -> A e. CC ) |
| 15 | 2 3 5 6 8 12 14 | zprodn0 | |- ( 1 e. ZZ -> prod_ k e. (/) A = 1 ) |
| 16 | 1 15 | ax-mp | |- prod_ k e. (/) A = 1 |