This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldiv | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( A / N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( |_ ` A ) = ( |_ ` A ) |
|
| 2 | eqid | |- ( A - ( |_ ` A ) ) = ( A - ( |_ ` A ) ) |
|
| 3 | 1 2 | intfrac2 | |- ( A e. RR -> ( 0 <_ ( A - ( |_ ` A ) ) /\ ( A - ( |_ ` A ) ) < 1 /\ A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) ) |
| 4 | 3 | simp3d | |- ( A e. RR -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) |
| 5 | 4 | adantr | |- ( ( A e. RR /\ N e. NN ) -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) ) |
| 7 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 8 | 7 | recnd | |- ( A e. RR -> ( |_ ` A ) e. CC ) |
| 9 | resubcl | |- ( ( A e. RR /\ ( |_ ` A ) e. RR ) -> ( A - ( |_ ` A ) ) e. RR ) |
|
| 10 | 7 9 | mpdan | |- ( A e. RR -> ( A - ( |_ ` A ) ) e. RR ) |
| 11 | 10 | recnd | |- ( A e. RR -> ( A - ( |_ ` A ) ) e. CC ) |
| 12 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 13 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 14 | 12 13 | jca | |- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
| 15 | divdir | |- ( ( ( |_ ` A ) e. CC /\ ( A - ( |_ ` A ) ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
|
| 16 | 8 11 14 15 | syl2an3an | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 17 | 6 16 | eqtrd | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 18 | flcl | |- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
|
| 19 | eqid | |- ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) |
|
| 20 | eqid | |- ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) = ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) |
|
| 21 | 19 20 | intfracq | |- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) /\ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) ) |
| 22 | 21 | simp3d | |- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) |
| 23 | 18 22 | sylan | |- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) |
| 24 | 23 | oveq1d | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 25 | 7 | adantr | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` A ) e. RR ) |
| 26 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 27 | 26 | adantl | |- ( ( A e. RR /\ N e. NN ) -> N e. RR ) |
| 28 | 13 | adantl | |- ( ( A e. RR /\ N e. NN ) -> N =/= 0 ) |
| 29 | 25 27 28 | redivcld | |- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) e. RR ) |
| 30 | reflcl | |- ( ( ( |_ ` A ) / N ) e. RR -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) |
|
| 31 | 29 30 | syl | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) |
| 32 | 31 | recnd | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. CC ) |
| 33 | 29 31 | resubcld | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR ) |
| 34 | 33 | recnd | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. CC ) |
| 35 | 10 | adantr | |- ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) e. RR ) |
| 36 | 35 27 28 | redivcld | |- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. RR ) |
| 37 | 36 | recnd | |- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. CC ) |
| 38 | 32 34 37 | addassd | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) |
| 39 | 17 24 38 | 3eqtrd | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) |
| 40 | 39 | fveq2d | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( A / N ) ) = ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) ) |
| 41 | 21 | simp1d | |- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) |
| 42 | 18 41 | sylan | |- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) |
| 43 | fracge0 | |- ( A e. RR -> 0 <_ ( A - ( |_ ` A ) ) ) |
|
| 44 | 10 43 | jca | |- ( A e. RR -> ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) ) |
| 45 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 46 | 26 45 | jca | |- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 47 | divge0 | |- ( ( ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) |
|
| 48 | 44 46 47 | syl2an | |- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) |
| 49 | 33 36 42 48 | addge0d | |- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 50 | peano2rem | |- ( N e. RR -> ( N - 1 ) e. RR ) |
|
| 51 | 26 50 | syl | |- ( N e. NN -> ( N - 1 ) e. RR ) |
| 52 | 51 26 13 | redivcld | |- ( N e. NN -> ( ( N - 1 ) / N ) e. RR ) |
| 53 | nnrecre | |- ( N e. NN -> ( 1 / N ) e. RR ) |
|
| 54 | 52 53 | jca | |- ( N e. NN -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) |
| 55 | 54 | adantl | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) |
| 56 | 33 36 55 | jca31 | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) ) |
| 57 | 21 | simp2d | |- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) |
| 58 | 18 57 | sylan | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) |
| 59 | fraclt1 | |- ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) |
|
| 60 | 59 | adantr | |- ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) < 1 ) |
| 61 | 1re | |- 1 e. RR |
|
| 62 | ltdiv1 | |- ( ( ( A - ( |_ ` A ) ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
|
| 63 | 61 62 | mp3an2 | |- ( ( ( A - ( |_ ` A ) ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 64 | 10 46 63 | syl2an | |- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 65 | 60 64 | mpbid | |- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) |
| 66 | 58 65 | jca | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 67 | leltadd | |- ( ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) ) |
|
| 68 | 56 66 67 | sylc | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 69 | ax-1cn | |- 1 e. CC |
|
| 70 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 71 | 12 69 70 | sylancl | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 72 | 71 | oveq1d | |- ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( N / N ) ) |
| 73 | 51 | recnd | |- ( N e. NN -> ( N - 1 ) e. CC ) |
| 74 | divdir | |- ( ( ( N - 1 ) e. CC /\ 1 e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
|
| 75 | 69 74 | mp3an2 | |- ( ( ( N - 1 ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 76 | 73 12 13 75 | syl12anc | |- ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 77 | 12 13 | dividd | |- ( N e. NN -> ( N / N ) = 1 ) |
| 78 | 72 76 77 | 3eqtr3d | |- ( N e. NN -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) |
| 79 | 78 | adantl | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) |
| 80 | 68 79 | breqtrd | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) |
| 81 | 29 | flcld | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ ) |
| 82 | 33 36 | readdcld | |- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) |
| 83 | flbi2 | |- ( ( ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) |
|
| 84 | 81 82 83 | syl2anc | |- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) |
| 85 | 49 80 84 | mpbir2and | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) ) |
| 86 | 40 85 | eqtr2d | |- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( A / N ) ) ) |