This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 . (Contributed by NM, 16-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intfracq.1 | |- Z = ( |_ ` ( M / N ) ) |
|
| intfracq.2 | |- F = ( ( M / N ) - Z ) |
||
| Assertion | intfracq | |- ( ( M e. ZZ /\ N e. NN ) -> ( 0 <_ F /\ F <_ ( ( N - 1 ) / N ) /\ ( M / N ) = ( Z + F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intfracq.1 | |- Z = ( |_ ` ( M / N ) ) |
|
| 2 | intfracq.2 | |- F = ( ( M / N ) - Z ) |
|
| 3 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 4 | 3 | adantr | |- ( ( M e. ZZ /\ N e. NN ) -> M e. RR ) |
| 5 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 6 | 5 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. RR ) |
| 7 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 8 | 7 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N =/= 0 ) |
| 9 | 4 6 8 | redivcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. RR ) |
| 10 | 1 2 | intfrac2 | |- ( ( M / N ) e. RR -> ( 0 <_ F /\ F < 1 /\ ( M / N ) = ( Z + F ) ) ) |
| 11 | 9 10 | syl | |- ( ( M e. ZZ /\ N e. NN ) -> ( 0 <_ F /\ F < 1 /\ ( M / N ) = ( Z + F ) ) ) |
| 12 | 11 | simp1d | |- ( ( M e. ZZ /\ N e. NN ) -> 0 <_ F ) |
| 13 | fraclt1 | |- ( ( M / N ) e. RR -> ( ( M / N ) - ( |_ ` ( M / N ) ) ) < 1 ) |
|
| 14 | 9 13 | syl | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - ( |_ ` ( M / N ) ) ) < 1 ) |
| 15 | 1 | oveq2i | |- ( ( M / N ) - Z ) = ( ( M / N ) - ( |_ ` ( M / N ) ) ) |
| 16 | 2 15 | eqtri | |- F = ( ( M / N ) - ( |_ ` ( M / N ) ) ) |
| 17 | 16 | a1i | |- ( ( M e. ZZ /\ N e. NN ) -> F = ( ( M / N ) - ( |_ ` ( M / N ) ) ) ) |
| 18 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 19 | 18 7 | dividd | |- ( N e. NN -> ( N / N ) = 1 ) |
| 20 | 19 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> ( N / N ) = 1 ) |
| 21 | 14 17 20 | 3brtr4d | |- ( ( M e. ZZ /\ N e. NN ) -> F < ( N / N ) ) |
| 22 | reflcl | |- ( ( M / N ) e. RR -> ( |_ ` ( M / N ) ) e. RR ) |
|
| 23 | 9 22 | syl | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. RR ) |
| 24 | 1 23 | eqeltrid | |- ( ( M e. ZZ /\ N e. NN ) -> Z e. RR ) |
| 25 | 9 24 | resubcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - Z ) e. RR ) |
| 26 | 2 25 | eqeltrid | |- ( ( M e. ZZ /\ N e. NN ) -> F e. RR ) |
| 27 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 28 | 5 27 | jca | |- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 29 | 28 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> ( N e. RR /\ 0 < N ) ) |
| 30 | ltmuldiv2 | |- ( ( F e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. F ) < N <-> F < ( N / N ) ) ) |
|
| 31 | 26 6 29 30 | syl3anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. F ) < N <-> F < ( N / N ) ) ) |
| 32 | 21 31 | mpbird | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) < N ) |
| 33 | 2 | oveq2i | |- ( N x. F ) = ( N x. ( ( M / N ) - Z ) ) |
| 34 | 18 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
| 35 | 9 | recnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. CC ) |
| 36 | 9 | flcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. ZZ ) |
| 37 | 1 36 | eqeltrid | |- ( ( M e. ZZ /\ N e. NN ) -> Z e. ZZ ) |
| 38 | 37 | zcnd | |- ( ( M e. ZZ /\ N e. NN ) -> Z e. CC ) |
| 39 | 34 35 38 | subdid | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( ( M / N ) - Z ) ) = ( ( N x. ( M / N ) ) - ( N x. Z ) ) ) |
| 40 | 33 39 | eqtrid | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) = ( ( N x. ( M / N ) ) - ( N x. Z ) ) ) |
| 41 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 42 | 41 | adantr | |- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
| 43 | 42 34 8 | divcan2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( M / N ) ) = M ) |
| 44 | simpl | |- ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ ) |
|
| 45 | 43 44 | eqeltrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( M / N ) ) e. ZZ ) |
| 46 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 47 | 46 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. ZZ ) |
| 48 | 47 37 | zmulcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. Z ) e. ZZ ) |
| 49 | 45 48 | zsubcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. ( M / N ) ) - ( N x. Z ) ) e. ZZ ) |
| 50 | 40 49 | eqeltrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) e. ZZ ) |
| 51 | zltlem1 | |- ( ( ( N x. F ) e. ZZ /\ N e. ZZ ) -> ( ( N x. F ) < N <-> ( N x. F ) <_ ( N - 1 ) ) ) |
|
| 52 | 50 47 51 | syl2anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. F ) < N <-> ( N x. F ) <_ ( N - 1 ) ) ) |
| 53 | 32 52 | mpbid | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. F ) <_ ( N - 1 ) ) |
| 54 | peano2rem | |- ( N e. RR -> ( N - 1 ) e. RR ) |
|
| 55 | 5 54 | syl | |- ( N e. NN -> ( N - 1 ) e. RR ) |
| 56 | 55 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> ( N - 1 ) e. RR ) |
| 57 | lemuldiv2 | |- ( ( F e. RR /\ ( N - 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( N x. F ) <_ ( N - 1 ) <-> F <_ ( ( N - 1 ) / N ) ) ) |
|
| 58 | 26 56 29 57 | syl3anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. F ) <_ ( N - 1 ) <-> F <_ ( ( N - 1 ) / N ) ) ) |
| 59 | 53 58 | mpbid | |- ( ( M e. ZZ /\ N e. NN ) -> F <_ ( ( N - 1 ) / N ) ) |
| 60 | 11 | simp3d | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) = ( Z + F ) ) |
| 61 | 12 59 60 | 3jca | |- ( ( M e. ZZ /\ N e. NN ) -> ( 0 <_ F /\ F <_ ( ( N - 1 ) / N ) /\ ( M / N ) = ( Z + F ) ) ) |