This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac ? (Contributed by NM, 16-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intfrac2.1 | |- Z = ( |_ ` A ) |
|
| intfrac2.2 | |- F = ( A - Z ) |
||
| Assertion | intfrac2 | |- ( A e. RR -> ( 0 <_ F /\ F < 1 /\ A = ( Z + F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intfrac2.1 | |- Z = ( |_ ` A ) |
|
| 2 | intfrac2.2 | |- F = ( A - Z ) |
|
| 3 | fracge0 | |- ( A e. RR -> 0 <_ ( A - ( |_ ` A ) ) ) |
|
| 4 | 1 | oveq2i | |- ( A - Z ) = ( A - ( |_ ` A ) ) |
| 5 | 2 4 | eqtri | |- F = ( A - ( |_ ` A ) ) |
| 6 | 3 5 | breqtrrdi | |- ( A e. RR -> 0 <_ F ) |
| 7 | fraclt1 | |- ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) |
|
| 8 | 5 7 | eqbrtrid | |- ( A e. RR -> F < 1 ) |
| 9 | 2 | oveq2i | |- ( Z + F ) = ( Z + ( A - Z ) ) |
| 10 | flcl | |- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
|
| 11 | 1 10 | eqeltrid | |- ( A e. RR -> Z e. ZZ ) |
| 12 | 11 | zcnd | |- ( A e. RR -> Z e. CC ) |
| 13 | recn | |- ( A e. RR -> A e. CC ) |
|
| 14 | 12 13 | pncan3d | |- ( A e. RR -> ( Z + ( A - Z ) ) = A ) |
| 15 | 9 14 | eqtr2id | |- ( A e. RR -> A = ( Z + F ) ) |
| 16 | 6 8 15 | 3jca | |- ( A e. RR -> ( 0 <_ F /\ F < 1 /\ A = ( Z + F ) ) ) |