This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leltadd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( A + B ) < ( C + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltleadd | |- ( ( ( B e. RR /\ A e. RR ) /\ ( D e. RR /\ C e. RR ) ) -> ( ( B < D /\ A <_ C ) -> ( B + A ) < ( D + C ) ) ) |
|
| 2 | 1 | ancomsd | |- ( ( ( B e. RR /\ A e. RR ) /\ ( D e. RR /\ C e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( B + A ) < ( D + C ) ) ) |
| 3 | 2 | ancom2s | |- ( ( ( B e. RR /\ A e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( B + A ) < ( D + C ) ) ) |
| 4 | 3 | ancom1s | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( B + A ) < ( D + C ) ) ) |
| 5 | recn | |- ( A e. RR -> A e. CC ) |
|
| 6 | recn | |- ( B e. RR -> B e. CC ) |
|
| 7 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 9 | recn | |- ( C e. RR -> C e. CC ) |
|
| 10 | recn | |- ( D e. RR -> D e. CC ) |
|
| 11 | addcom | |- ( ( C e. CC /\ D e. CC ) -> ( C + D ) = ( D + C ) ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( C e. RR /\ D e. RR ) -> ( C + D ) = ( D + C ) ) |
| 13 | 8 12 | breqan12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + B ) < ( C + D ) <-> ( B + A ) < ( D + C ) ) ) |
| 14 | 4 13 | sylibrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B < D ) -> ( A + B ) < ( C + D ) ) ) |