This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsaddval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsaddval.p | |- P = ( I mPoly U ) |
||
| evlsaddval.u | |- U = ( S |`s R ) |
||
| evlsaddval.k | |- K = ( Base ` S ) |
||
| evlsaddval.b | |- B = ( Base ` P ) |
||
| evlsaddval.i | |- ( ph -> I e. Z ) |
||
| evlsaddval.s | |- ( ph -> S e. CRing ) |
||
| evlsaddval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsaddval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| evlsaddval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
||
| evlsexpval.g | |- .xb = ( .g ` ( mulGrp ` P ) ) |
||
| evlsexpval.f | |- .^ = ( .g ` ( mulGrp ` S ) ) |
||
| evlsexpval.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | evlsexpval | |- ( ph -> ( ( N .xb M ) e. B /\ ( ( Q ` ( N .xb M ) ) ` A ) = ( N .^ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsaddval.p | |- P = ( I mPoly U ) |
|
| 3 | evlsaddval.u | |- U = ( S |`s R ) |
|
| 4 | evlsaddval.k | |- K = ( Base ` S ) |
|
| 5 | evlsaddval.b | |- B = ( Base ` P ) |
|
| 6 | evlsaddval.i | |- ( ph -> I e. Z ) |
|
| 7 | evlsaddval.s | |- ( ph -> S e. CRing ) |
|
| 8 | evlsaddval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 9 | evlsaddval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 10 | evlsaddval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
|
| 11 | evlsexpval.g | |- .xb = ( .g ` ( mulGrp ` P ) ) |
|
| 12 | evlsexpval.f | |- .^ = ( .g ` ( mulGrp ` S ) ) |
|
| 13 | evlsexpval.n | |- ( ph -> N e. NN0 ) |
|
| 14 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 15 | 14 5 | mgpbas | |- B = ( Base ` ( mulGrp ` P ) ) |
| 16 | eqid | |- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
|
| 17 | 1 2 3 16 4 | evlsrhm | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 18 | 6 7 8 17 | syl3anc | |- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 19 | rhmrcl1 | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> P e. Ring ) |
|
| 20 | 14 | ringmgp | |- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 21 | 18 19 20 | 3syl | |- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 22 | 10 | simpld | |- ( ph -> M e. B ) |
| 23 | 15 11 21 13 22 | mulgnn0cld | |- ( ph -> ( N .xb M ) e. B ) |
| 24 | eqid | |- ( mulGrp ` ( S ^s ( K ^m I ) ) ) = ( mulGrp ` ( S ^s ( K ^m I ) ) ) |
|
| 25 | 1 2 14 11 3 16 24 4 5 6 7 8 13 22 | evlspw | |- ( ph -> ( Q ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) ( Q ` M ) ) ) |
| 26 | 25 | fveq1d | |- ( ph -> ( ( Q ` ( N .xb M ) ) ` A ) = ( ( N ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) ( Q ` M ) ) ` A ) ) |
| 27 | eqid | |- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
|
| 28 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 29 | eqid | |- ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) = ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) |
|
| 30 | 7 | crngringd | |- ( ph -> S e. Ring ) |
| 31 | ovexd | |- ( ph -> ( K ^m I ) e. _V ) |
|
| 32 | 5 27 | rhmf | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 33 | 18 32 | syl | |- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 34 | 33 22 | ffvelcdmd | |- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 35 | 16 27 24 28 29 12 30 31 13 34 9 | pwsexpg | |- ( ph -> ( ( N ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) ( Q ` M ) ) ` A ) = ( N .^ ( ( Q ` M ) ` A ) ) ) |
| 36 | 10 | simprd | |- ( ph -> ( ( Q ` M ) ` A ) = V ) |
| 37 | 36 | oveq2d | |- ( ph -> ( N .^ ( ( Q ` M ) ` A ) ) = ( N .^ V ) ) |
| 38 | 26 35 37 | 3eqtrd | |- ( ph -> ( ( Q ` ( N .xb M ) ) ` A ) = ( N .^ V ) ) |
| 39 | 23 38 | jca | |- ( ph -> ( ( N .xb M ) e. B /\ ( ( Q ` ( N .xb M ) ) ` A ) = ( N .^ V ) ) ) |