This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sniffsupp.i | |- ( ph -> I e. V ) |
|
| sniffsupp.0 | |- ( ph -> .0. e. W ) |
||
| sniffsupp.f | |- F = ( x e. I |-> if ( x = X , A , .0. ) ) |
||
| Assertion | sniffsupp | |- ( ph -> F finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sniffsupp.i | |- ( ph -> I e. V ) |
|
| 2 | sniffsupp.0 | |- ( ph -> .0. e. W ) |
|
| 3 | sniffsupp.f | |- F = ( x e. I |-> if ( x = X , A , .0. ) ) |
|
| 4 | snfi | |- { X } e. Fin |
|
| 5 | eldifsni | |- ( x e. ( I \ { X } ) -> x =/= X ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ x e. ( I \ { X } ) ) -> x =/= X ) |
| 7 | 6 | neneqd | |- ( ( ph /\ x e. ( I \ { X } ) ) -> -. x = X ) |
| 8 | 7 | iffalsed | |- ( ( ph /\ x e. ( I \ { X } ) ) -> if ( x = X , A , .0. ) = .0. ) |
| 9 | 8 1 | suppss2 | |- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) C_ { X } ) |
| 10 | ssfi | |- ( ( { X } e. Fin /\ ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) C_ { X } ) -> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) |
|
| 11 | 4 9 10 | sylancr | |- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) |
| 12 | funmpt | |- Fun ( x e. I |-> if ( x = X , A , .0. ) ) |
|
| 13 | 1 | mptexd | |- ( ph -> ( x e. I |-> if ( x = X , A , .0. ) ) e. _V ) |
| 14 | funisfsupp | |- ( ( Fun ( x e. I |-> if ( x = X , A , .0. ) ) /\ ( x e. I |-> if ( x = X , A , .0. ) ) e. _V /\ .0. e. W ) -> ( ( x e. I |-> if ( x = X , A , .0. ) ) finSupp .0. <-> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) ) |
|
| 15 | 12 13 2 14 | mp3an2i | |- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) finSupp .0. <-> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) ) |
| 16 | 11 15 | mpbird | |- ( ph -> ( x e. I |-> if ( x = X , A , .0. ) ) finSupp .0. ) |
| 17 | 3 16 | eqbrtrid | |- ( ph -> F finSupp .0. ) |