This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvvvallem2.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| evlsvvvallem2.p | |- P = ( I mPoly U ) |
||
| evlsvvvallem2.u | |- U = ( S |`s R ) |
||
| evlsvvvallem2.b | |- B = ( Base ` P ) |
||
| evlsvvvallem2.k | |- K = ( Base ` S ) |
||
| evlsvvvallem2.m | |- M = ( mulGrp ` S ) |
||
| evlsvvvallem2.w | |- .^ = ( .g ` M ) |
||
| evlsvvvallem2.x | |- .x. = ( .r ` S ) |
||
| evlsvvvallem2.i | |- ( ph -> I e. V ) |
||
| evlsvvvallem2.s | |- ( ph -> S e. CRing ) |
||
| evlsvvvallem2.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsvvvallem2.f | |- ( ph -> F e. B ) |
||
| evlsvvvallem2.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | evlsvvvallem2 | |- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem2.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 2 | evlsvvvallem2.p | |- P = ( I mPoly U ) |
|
| 3 | evlsvvvallem2.u | |- U = ( S |`s R ) |
|
| 4 | evlsvvvallem2.b | |- B = ( Base ` P ) |
|
| 5 | evlsvvvallem2.k | |- K = ( Base ` S ) |
|
| 6 | evlsvvvallem2.m | |- M = ( mulGrp ` S ) |
|
| 7 | evlsvvvallem2.w | |- .^ = ( .g ` M ) |
|
| 8 | evlsvvvallem2.x | |- .x. = ( .r ` S ) |
|
| 9 | evlsvvvallem2.i | |- ( ph -> I e. V ) |
|
| 10 | evlsvvvallem2.s | |- ( ph -> S e. CRing ) |
|
| 11 | evlsvvvallem2.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 12 | evlsvvvallem2.f | |- ( ph -> F e. B ) |
|
| 13 | evlsvvvallem2.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 14 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 15 | 1 14 | rabex2 | |- D e. _V |
| 16 | 15 | mptex | |- ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) e. _V |
| 17 | 16 | a1i | |- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) e. _V ) |
| 18 | fvexd | |- ( ph -> ( 0g ` S ) e. _V ) |
|
| 19 | funmpt | |- Fun ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |
|
| 20 | 19 | a1i | |- ( ph -> Fun ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) |
| 21 | eqid | |- ( 0g ` U ) = ( 0g ` U ) |
|
| 22 | 2 4 21 12 | mplelsfi | |- ( ph -> F finSupp ( 0g ` U ) ) |
| 23 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 24 | 2 23 4 1 12 | mplelf | |- ( ph -> F : D --> ( Base ` U ) ) |
| 25 | ssidd | |- ( ph -> ( F supp ( 0g ` U ) ) C_ ( F supp ( 0g ` U ) ) ) |
|
| 26 | fvexd | |- ( ph -> ( 0g ` U ) e. _V ) |
|
| 27 | 24 25 12 26 | suppssrg | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( F ` b ) = ( 0g ` U ) ) |
| 28 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 29 | 3 28 | subrg0 | |- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 30 | 11 29 | syl | |- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
| 31 | 30 | eqcomd | |- ( ph -> ( 0g ` U ) = ( 0g ` S ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( 0g ` U ) = ( 0g ` S ) ) |
| 33 | 27 32 | eqtrd | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( F ` b ) = ( 0g ` S ) ) |
| 34 | 33 | oveq1d | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 0g ` S ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |
| 35 | 10 | crngringd | |- ( ph -> S e. Ring ) |
| 36 | 35 | adantr | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> S e. Ring ) |
| 37 | eldifi | |- ( b e. ( D \ ( F supp ( 0g ` U ) ) ) -> b e. D ) |
|
| 38 | 9 | adantr | |- ( ( ph /\ b e. D ) -> I e. V ) |
| 39 | 10 | adantr | |- ( ( ph /\ b e. D ) -> S e. CRing ) |
| 40 | 13 | adantr | |- ( ( ph /\ b e. D ) -> A e. ( K ^m I ) ) |
| 41 | simpr | |- ( ( ph /\ b e. D ) -> b e. D ) |
|
| 42 | 1 5 6 7 38 39 40 41 | evlsvvvallem | |- ( ( ph /\ b e. D ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) |
| 43 | 37 42 | sylan2 | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) |
| 44 | 5 8 28 36 43 | ringlzd | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( 0g ` S ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
| 45 | 34 44 | eqtrd | |- ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
| 46 | 15 | a1i | |- ( ph -> D e. _V ) |
| 47 | 45 46 | suppss2 | |- ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) supp ( 0g ` S ) ) C_ ( F supp ( 0g ` U ) ) ) |
| 48 | 17 18 20 22 47 | fsuppsssuppgd | |- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) ) |