This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 5-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgvr1.x | |- X = ( var1 ` R ) |
|
| subrgvr1.r | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| subrgvr1.h | |- H = ( R |`s T ) |
||
| Assertion | subrgvr1 | |- ( ph -> X = ( var1 ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgvr1.x | |- X = ( var1 ` R ) |
|
| 2 | subrgvr1.r | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 3 | subrgvr1.h | |- H = ( R |`s T ) |
|
| 4 | eqid | |- ( 1o mVar R ) = ( 1o mVar R ) |
|
| 5 | 1on | |- 1o e. On |
|
| 6 | 5 | a1i | |- ( ph -> 1o e. On ) |
| 7 | 4 6 2 3 | subrgmvr | |- ( ph -> ( 1o mVar R ) = ( 1o mVar H ) ) |
| 8 | 7 | fveq1d | |- ( ph -> ( ( 1o mVar R ) ` (/) ) = ( ( 1o mVar H ) ` (/) ) ) |
| 9 | 1 | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| 10 | eqid | |- ( var1 ` H ) = ( var1 ` H ) |
|
| 11 | 10 | vr1val | |- ( var1 ` H ) = ( ( 1o mVar H ) ` (/) ) |
| 12 | 8 9 11 | 3eqtr4g | |- ( ph -> X = ( var1 ` H ) ) |