This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgvr1.x | |- X = ( var1 ` R ) |
|
| subrgvr1.r | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| subrgvr1.h | |- H = ( R |`s T ) |
||
| subrgvr1cl.u | |- U = ( Poly1 ` H ) |
||
| subrgvr1cl.b | |- B = ( Base ` U ) |
||
| Assertion | subrgvr1cl | |- ( ph -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgvr1.x | |- X = ( var1 ` R ) |
|
| 2 | subrgvr1.r | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 3 | subrgvr1.h | |- H = ( R |`s T ) |
|
| 4 | subrgvr1cl.u | |- U = ( Poly1 ` H ) |
|
| 5 | subrgvr1cl.b | |- B = ( Base ` U ) |
|
| 6 | 1 | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| 7 | eqid | |- ( 1o mVar R ) = ( 1o mVar R ) |
|
| 8 | 1on | |- 1o e. On |
|
| 9 | 8 | a1i | |- ( ph -> 1o e. On ) |
| 10 | eqid | |- ( 1o mPoly H ) = ( 1o mPoly H ) |
|
| 11 | 4 5 | ply1bas | |- B = ( Base ` ( 1o mPoly H ) ) |
| 12 | 7 9 2 3 10 11 | subrgmvrf | |- ( ph -> ( 1o mVar R ) : 1o --> B ) |
| 13 | 0lt1o | |- (/) e. 1o |
|
| 14 | ffvelcdm | |- ( ( ( 1o mVar R ) : 1o --> B /\ (/) e. 1o ) -> ( ( 1o mVar R ) ` (/) ) e. B ) |
|
| 15 | 12 13 14 | sylancl | |- ( ph -> ( ( 1o mVar R ) ` (/) ) e. B ) |
| 16 | 6 15 | eqeltrid | |- ( ph -> X e. B ) |