This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgmvr.v | |- V = ( I mVar R ) |
|
| subrgmvr.i | |- ( ph -> I e. W ) |
||
| subrgmvr.r | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| subrgmvr.h | |- H = ( R |`s T ) |
||
| Assertion | subrgmvr | |- ( ph -> V = ( I mVar H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmvr.v | |- V = ( I mVar R ) |
|
| 2 | subrgmvr.i | |- ( ph -> I e. W ) |
|
| 3 | subrgmvr.r | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 4 | subrgmvr.h | |- H = ( R |`s T ) |
|
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | 4 5 | subrg1 | |- ( T e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` H ) ) |
| 7 | 3 6 | syl | |- ( ph -> ( 1r ` R ) = ( 1r ` H ) ) |
| 8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 9 | 4 8 | subrg0 | |- ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) |
| 10 | 3 9 | syl | |- ( ph -> ( 0g ` R ) = ( 0g ` H ) ) |
| 11 | 7 10 | ifeq12d | |- ( ph -> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) |
| 12 | 11 | mpteq2dv | |- ( ph -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) |
| 13 | 12 | mpteq2dv | |- ( ph -> ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) ) |
| 14 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 15 | subrgrcl | |- ( T e. ( SubRing ` R ) -> R e. Ring ) |
|
| 16 | 3 15 | syl | |- ( ph -> R e. Ring ) |
| 17 | 1 14 8 5 2 16 | mvrfval | |- ( ph -> V = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 18 | eqid | |- ( I mVar H ) = ( I mVar H ) |
|
| 19 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 20 | eqid | |- ( 1r ` H ) = ( 1r ` H ) |
|
| 21 | 4 | ovexi | |- H e. _V |
| 22 | 21 | a1i | |- ( ph -> H e. _V ) |
| 23 | 18 14 19 20 2 22 | mvrfval | |- ( ph -> ( I mVar H ) = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) ) |
| 24 | 13 17 23 | 3eqtr4d | |- ( ph -> V = ( I mVar H ) ) |