This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1scasrng.q | |- Q = ( S evalSub1 R ) |
|
| evls1scasrng.o | |- O = ( eval1 ` S ) |
||
| evls1scasrng.w | |- W = ( Poly1 ` U ) |
||
| evls1scasrng.u | |- U = ( S |`s R ) |
||
| evls1scasrng.p | |- P = ( Poly1 ` S ) |
||
| evls1scasrng.b | |- B = ( Base ` S ) |
||
| evls1scasrng.a | |- A = ( algSc ` W ) |
||
| evls1scasrng.c | |- C = ( algSc ` P ) |
||
| evls1scasrng.s | |- ( ph -> S e. CRing ) |
||
| evls1scasrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1scasrng.x | |- ( ph -> X e. R ) |
||
| Assertion | evls1scasrng | |- ( ph -> ( Q ` ( A ` X ) ) = ( O ` ( C ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1scasrng.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1scasrng.o | |- O = ( eval1 ` S ) |
|
| 3 | evls1scasrng.w | |- W = ( Poly1 ` U ) |
|
| 4 | evls1scasrng.u | |- U = ( S |`s R ) |
|
| 5 | evls1scasrng.p | |- P = ( Poly1 ` S ) |
|
| 6 | evls1scasrng.b | |- B = ( Base ` S ) |
|
| 7 | evls1scasrng.a | |- A = ( algSc ` W ) |
|
| 8 | evls1scasrng.c | |- C = ( algSc ` P ) |
|
| 9 | evls1scasrng.s | |- ( ph -> S e. CRing ) |
|
| 10 | evls1scasrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 11 | evls1scasrng.x | |- ( ph -> X e. R ) |
|
| 12 | 6 | ressid | |- ( S e. CRing -> ( S |`s B ) = S ) |
| 13 | 12 | eqcomd | |- ( S e. CRing -> S = ( S |`s B ) ) |
| 14 | 9 13 | syl | |- ( ph -> S = ( S |`s B ) ) |
| 15 | 14 | fveq2d | |- ( ph -> ( Poly1 ` S ) = ( Poly1 ` ( S |`s B ) ) ) |
| 16 | 5 15 | eqtrid | |- ( ph -> P = ( Poly1 ` ( S |`s B ) ) ) |
| 17 | 16 | fveq2d | |- ( ph -> ( algSc ` P ) = ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ) |
| 18 | 8 17 | eqtrid | |- ( ph -> C = ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ) |
| 19 | 18 | fveq1d | |- ( ph -> ( C ` X ) = ( ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ` X ) ) |
| 20 | 19 | fveq2d | |- ( ph -> ( ( S evalSub1 B ) ` ( C ` X ) ) = ( ( S evalSub1 B ) ` ( ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ` X ) ) ) |
| 21 | eqid | |- ( S evalSub1 B ) = ( S evalSub1 B ) |
|
| 22 | eqid | |- ( Poly1 ` ( S |`s B ) ) = ( Poly1 ` ( S |`s B ) ) |
|
| 23 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 24 | eqid | |- ( algSc ` ( Poly1 ` ( S |`s B ) ) ) = ( algSc ` ( Poly1 ` ( S |`s B ) ) ) |
|
| 25 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 26 | 6 | subrgid | |- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 27 | 9 25 26 | 3syl | |- ( ph -> B e. ( SubRing ` S ) ) |
| 28 | 6 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 29 | 10 28 | syl | |- ( ph -> R C_ B ) |
| 30 | 29 11 | sseldd | |- ( ph -> X e. B ) |
| 31 | 21 22 23 6 24 9 27 30 | evls1sca | |- ( ph -> ( ( S evalSub1 B ) ` ( ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ` X ) ) = ( B X. { X } ) ) |
| 32 | 20 31 | eqtrd | |- ( ph -> ( ( S evalSub1 B ) ` ( C ` X ) ) = ( B X. { X } ) ) |
| 33 | 2 6 | evl1fval1 | |- O = ( S evalSub1 B ) |
| 34 | 33 | a1i | |- ( ph -> O = ( S evalSub1 B ) ) |
| 35 | 34 | fveq1d | |- ( ph -> ( O ` ( C ` X ) ) = ( ( S evalSub1 B ) ` ( C ` X ) ) ) |
| 36 | 1 3 4 6 7 9 10 11 | evls1sca | |- ( ph -> ( Q ` ( A ` X ) ) = ( B X. { X } ) ) |
| 37 | 32 35 36 | 3eqtr4rd | |- ( ph -> ( Q ` ( A ` X ) ) = ( O ` ( C ` X ) ) ) |