This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvarsrng.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsvarsrng.o | |- O = ( I eval S ) |
||
| evlsvarsrng.v | |- V = ( I mVar U ) |
||
| evlsvarsrng.u | |- U = ( S |`s R ) |
||
| evlsvarsrng.b | |- B = ( Base ` S ) |
||
| evlsvarsrng.i | |- ( ph -> I e. A ) |
||
| evlsvarsrng.s | |- ( ph -> S e. CRing ) |
||
| evlsvarsrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsvarsrng.x | |- ( ph -> X e. I ) |
||
| Assertion | evlsvarsrng | |- ( ph -> ( Q ` ( V ` X ) ) = ( O ` ( V ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarsrng.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsvarsrng.o | |- O = ( I eval S ) |
|
| 3 | evlsvarsrng.v | |- V = ( I mVar U ) |
|
| 4 | evlsvarsrng.u | |- U = ( S |`s R ) |
|
| 5 | evlsvarsrng.b | |- B = ( Base ` S ) |
|
| 6 | evlsvarsrng.i | |- ( ph -> I e. A ) |
|
| 7 | evlsvarsrng.s | |- ( ph -> S e. CRing ) |
|
| 8 | evlsvarsrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 9 | evlsvarsrng.x | |- ( ph -> X e. I ) |
|
| 10 | 1 3 4 5 6 7 8 9 | evlsvar | |- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 11 | 2 5 | evlval | |- O = ( ( I evalSub S ) ` B ) |
| 12 | 11 | a1i | |- ( ph -> O = ( ( I evalSub S ) ` B ) ) |
| 13 | 12 | fveq1d | |- ( ph -> ( O ` ( V ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( V ` X ) ) ) |
| 14 | 3 | a1i | |- ( ph -> V = ( I mVar U ) ) |
| 15 | eqid | |- ( I mVar S ) = ( I mVar S ) |
|
| 16 | 15 6 8 4 | subrgmvr | |- ( ph -> ( I mVar S ) = ( I mVar U ) ) |
| 17 | 5 | ressid | |- ( S e. CRing -> ( S |`s B ) = S ) |
| 18 | 7 17 | syl | |- ( ph -> ( S |`s B ) = S ) |
| 19 | 18 | eqcomd | |- ( ph -> S = ( S |`s B ) ) |
| 20 | 19 | oveq2d | |- ( ph -> ( I mVar S ) = ( I mVar ( S |`s B ) ) ) |
| 21 | 14 16 20 | 3eqtr2d | |- ( ph -> V = ( I mVar ( S |`s B ) ) ) |
| 22 | 21 | fveq1d | |- ( ph -> ( V ` X ) = ( ( I mVar ( S |`s B ) ) ` X ) ) |
| 23 | 22 | fveq2d | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( V ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) ) |
| 24 | eqid | |- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
|
| 25 | eqid | |- ( I mVar ( S |`s B ) ) = ( I mVar ( S |`s B ) ) |
|
| 26 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 27 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 28 | 5 | subrgid | |- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 29 | 7 27 28 | 3syl | |- ( ph -> B e. ( SubRing ` S ) ) |
| 30 | 24 25 26 5 6 7 29 9 | evlsvar | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 31 | 13 23 30 | 3eqtrrd | |- ( ph -> ( g e. ( B ^m I ) |-> ( g ` X ) ) = ( O ` ( V ` X ) ) ) |
| 32 | 10 31 | eqtrd | |- ( ph -> ( Q ` ( V ` X ) ) = ( O ` ( V ` X ) ) ) |