This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the generator of the power series algebra (the X in R [ [ X ] ] ). Since all univariate polynomial rings over a fixed base ring R are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = { (/) } is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vr1val.1 | |- X = ( var1 ` R ) |
|
| Assertion | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1val.1 | |- X = ( var1 ` R ) |
|
| 2 | oveq2 | |- ( r = R -> ( 1o mVar r ) = ( 1o mVar R ) ) |
|
| 3 | 2 | fveq1d | |- ( r = R -> ( ( 1o mVar r ) ` (/) ) = ( ( 1o mVar R ) ` (/) ) ) |
| 4 | df-vr1 | |- var1 = ( r e. _V |-> ( ( 1o mVar r ) ` (/) ) ) |
|
| 5 | fvex | |- ( ( 1o mVar R ) ` (/) ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( R e. _V -> ( var1 ` R ) = ( ( 1o mVar R ) ` (/) ) ) |
| 7 | 1 6 | eqtrid | |- ( R e. _V -> X = ( ( 1o mVar R ) ` (/) ) ) |
| 8 | fvprc | |- ( -. R e. _V -> ( var1 ` R ) = (/) ) |
|
| 9 | 0fv | |- ( (/) ` (/) ) = (/) |
|
| 10 | 8 1 9 | 3eqtr4g | |- ( -. R e. _V -> X = ( (/) ` (/) ) ) |
| 11 | df-mvr | |- mVar = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |
|
| 12 | 11 | reldmmpo | |- Rel dom mVar |
| 13 | 12 | ovprc2 | |- ( -. R e. _V -> ( 1o mVar R ) = (/) ) |
| 14 | 13 | fveq1d | |- ( -. R e. _V -> ( ( 1o mVar R ) ` (/) ) = ( (/) ` (/) ) ) |
| 15 | 10 14 | eqtr4d | |- ( -. R e. _V -> X = ( ( 1o mVar R ) ` (/) ) ) |
| 16 | 7 15 | pm2.61i | |- X = ( ( 1o mVar R ) ` (/) ) |