This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1fval.q | |- Q = ( S evalSub1 R ) |
|
| evls1fval.e | |- E = ( 1o evalSub S ) |
||
| evls1fval.b | |- B = ( Base ` S ) |
||
| evls1val.m | |- M = ( 1o mPoly ( S |`s R ) ) |
||
| evls1val.k | |- K = ( Base ` M ) |
||
| Assertion | evls1val | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( Q ` A ) = ( ( ( E ` R ) ` A ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1fval.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1fval.e | |- E = ( 1o evalSub S ) |
|
| 3 | evls1fval.b | |- B = ( Base ` S ) |
|
| 4 | evls1val.m | |- M = ( 1o mPoly ( S |`s R ) ) |
|
| 5 | evls1val.k | |- K = ( Base ` M ) |
|
| 6 | 3 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 7 | 6 | adantl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> R C_ B ) |
| 8 | elpwg | |- ( R e. ( SubRing ` S ) -> ( R e. ~P B <-> R C_ B ) ) |
|
| 9 | 8 | adantl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( R e. ~P B <-> R C_ B ) ) |
| 10 | 7 9 | mpbird | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> R e. ~P B ) |
| 11 | 1 2 3 | evls1fval | |- ( ( S e. CRing /\ R e. ~P B ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( E ` R ) ) ) |
| 12 | 10 11 | syldan | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( E ` R ) ) ) |
| 13 | 12 | fveq1d | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q ` A ) = ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( E ` R ) ) ` A ) ) |
| 14 | 13 | 3adant3 | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( Q ` A ) = ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( E ` R ) ) ` A ) ) |
| 15 | 1on | |- 1o e. On |
|
| 16 | simp1 | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> S e. CRing ) |
|
| 17 | simp2 | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> R e. ( SubRing ` S ) ) |
|
| 18 | 2 | fveq1i | |- ( E ` R ) = ( ( 1o evalSub S ) ` R ) |
| 19 | eqid | |- ( S |`s R ) = ( S |`s R ) |
|
| 20 | eqid | |- ( S ^s ( B ^m 1o ) ) = ( S ^s ( B ^m 1o ) ) |
|
| 21 | 18 4 19 20 3 | evlsrhm | |- ( ( 1o e. On /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( E ` R ) e. ( M RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 22 | 15 16 17 21 | mp3an2i | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( E ` R ) e. ( M RingHom ( S ^s ( B ^m 1o ) ) ) ) |
| 23 | eqid | |- ( Base ` ( S ^s ( B ^m 1o ) ) ) = ( Base ` ( S ^s ( B ^m 1o ) ) ) |
|
| 24 | 5 23 | rhmf | |- ( ( E ` R ) e. ( M RingHom ( S ^s ( B ^m 1o ) ) ) -> ( E ` R ) : K --> ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 25 | 22 24 | syl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( E ` R ) : K --> ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 26 | simp3 | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> A e. K ) |
|
| 27 | fvco3 | |- ( ( ( E ` R ) : K --> ( Base ` ( S ^s ( B ^m 1o ) ) ) /\ A e. K ) -> ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( E ` R ) ) ` A ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( E ` R ) ` A ) ) ) |
|
| 28 | 25 26 27 | syl2anc | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( E ` R ) ) ` A ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( E ` R ) ` A ) ) ) |
| 29 | 25 26 | ffvelcdmd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( ( E ` R ) ` A ) e. ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 30 | ovex | |- ( B ^m 1o ) e. _V |
|
| 31 | 20 3 | pwsbas | |- ( ( S e. CRing /\ ( B ^m 1o ) e. _V ) -> ( B ^m ( B ^m 1o ) ) = ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 32 | 16 30 31 | sylancl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( B ^m ( B ^m 1o ) ) = ( Base ` ( S ^s ( B ^m 1o ) ) ) ) |
| 33 | 29 32 | eleqtrrd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( ( E ` R ) ` A ) e. ( B ^m ( B ^m 1o ) ) ) |
| 34 | coeq1 | |- ( x = ( ( E ` R ) ` A ) -> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( E ` R ) ` A ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
|
| 35 | eqid | |- ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
|
| 36 | fvex | |- ( ( E ` R ) ` A ) e. _V |
|
| 37 | 3 | fvexi | |- B e. _V |
| 38 | 37 | mptex | |- ( y e. B |-> ( 1o X. { y } ) ) e. _V |
| 39 | 36 38 | coex | |- ( ( ( E ` R ) ` A ) o. ( y e. B |-> ( 1o X. { y } ) ) ) e. _V |
| 40 | 34 35 39 | fvmpt | |- ( ( ( E ` R ) ` A ) e. ( B ^m ( B ^m 1o ) ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( E ` R ) ` A ) ) = ( ( ( E ` R ) ` A ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 41 | 33 40 | syl | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ` ( ( E ` R ) ` A ) ) = ( ( ( E ` R ) ` A ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 42 | 14 28 41 | 3eqtrd | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ A e. K ) -> ( Q ` A ) = ( ( ( E ` R ) ` A ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |