This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1var.q | |- O = ( eval1 ` R ) |
|
| evl1var.v | |- X = ( var1 ` R ) |
||
| evl1var.b | |- B = ( Base ` R ) |
||
| Assertion | evl1var | |- ( R e. CRing -> ( O ` X ) = ( _I |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1var.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1var.v | |- X = ( var1 ` R ) |
|
| 3 | evl1var.b | |- B = ( Base ` R ) |
|
| 4 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 5 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 6 | eqid | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
|
| 7 | 2 5 6 | vr1cl | |- ( R e. Ring -> X e. ( Base ` ( Poly1 ` R ) ) ) |
| 8 | 4 7 | syl | |- ( R e. CRing -> X e. ( Base ` ( Poly1 ` R ) ) ) |
| 9 | eqid | |- ( 1o eval R ) = ( 1o eval R ) |
|
| 10 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 11 | 5 6 | ply1bas | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 12 | 1 9 3 10 11 | evl1val | |- ( ( R e. CRing /\ X e. ( Base ` ( Poly1 ` R ) ) ) -> ( O ` X ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 13 | 8 12 | mpdan | |- ( R e. CRing -> ( O ` X ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
| 14 | df1o2 | |- 1o = { (/) } |
|
| 15 | 3 | fvexi | |- B e. _V |
| 16 | 0ex | |- (/) e. _V |
|
| 17 | eqid | |- ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) |
|
| 18 | 14 15 16 17 | mapsncnv | |- `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) = ( y e. B |-> ( 1o X. { y } ) ) |
| 19 | 18 | coeq2i | |- ( ( ( 1o eval R ) ` X ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) |
| 20 | 3 | ressid | |- ( R e. CRing -> ( R |`s B ) = R ) |
| 21 | 20 | oveq2d | |- ( R e. CRing -> ( 1o mVar ( R |`s B ) ) = ( 1o mVar R ) ) |
| 22 | 21 | fveq1d | |- ( R e. CRing -> ( ( 1o mVar ( R |`s B ) ) ` (/) ) = ( ( 1o mVar R ) ` (/) ) ) |
| 23 | 2 | vr1val | |- X = ( ( 1o mVar R ) ` (/) ) |
| 24 | 22 23 | eqtr4di | |- ( R e. CRing -> ( ( 1o mVar ( R |`s B ) ) ` (/) ) = X ) |
| 25 | 24 | fveq2d | |- ( R e. CRing -> ( ( 1o eval R ) ` ( ( 1o mVar ( R |`s B ) ) ` (/) ) ) = ( ( 1o eval R ) ` X ) ) |
| 26 | 9 3 | evlval | |- ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) |
| 27 | eqid | |- ( 1o mVar ( R |`s B ) ) = ( 1o mVar ( R |`s B ) ) |
|
| 28 | eqid | |- ( R |`s B ) = ( R |`s B ) |
|
| 29 | 1on | |- 1o e. On |
|
| 30 | 29 | a1i | |- ( R e. CRing -> 1o e. On ) |
| 31 | id | |- ( R e. CRing -> R e. CRing ) |
|
| 32 | 3 | subrgid | |- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 33 | 4 32 | syl | |- ( R e. CRing -> B e. ( SubRing ` R ) ) |
| 34 | 0lt1o | |- (/) e. 1o |
|
| 35 | 34 | a1i | |- ( R e. CRing -> (/) e. 1o ) |
| 36 | 26 27 28 3 30 31 33 35 | evlsvar | |- ( R e. CRing -> ( ( 1o eval R ) ` ( ( 1o mVar ( R |`s B ) ) ` (/) ) ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) |
| 37 | 25 36 | eqtr3d | |- ( R e. CRing -> ( ( 1o eval R ) ` X ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) |
| 38 | 37 | coeq1d | |- ( R e. CRing -> ( ( ( 1o eval R ) ` X ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) ) |
| 39 | 19 38 | eqtr3id | |- ( R e. CRing -> ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) ) |
| 40 | 14 15 16 17 | mapsnf1o2 | |- ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) : ( B ^m 1o ) -1-1-onto-> B |
| 41 | f1ococnv2 | |- ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) : ( B ^m 1o ) -1-1-onto-> B -> ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( _I |` B ) ) |
|
| 42 | 40 41 | mp1i | |- ( R e. CRing -> ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( _I |` B ) ) |
| 43 | 13 39 42 | 3eqtrd | |- ( R e. CRing -> ( O ` X ) = ( _I |` B ) ) |