This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iserd.1 | |- ( ph -> Rel R ) |
|
| iserd.2 | |- ( ( ph /\ x R y ) -> y R x ) |
||
| iserd.3 | |- ( ( ph /\ ( x R y /\ y R z ) ) -> x R z ) |
||
| iserd.4 | |- ( ph -> ( x e. A <-> x R x ) ) |
||
| Assertion | iserd | |- ( ph -> R Er A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 | |- ( ph -> Rel R ) |
|
| 2 | iserd.2 | |- ( ( ph /\ x R y ) -> y R x ) |
|
| 3 | iserd.3 | |- ( ( ph /\ ( x R y /\ y R z ) ) -> x R z ) |
|
| 4 | iserd.4 | |- ( ph -> ( x e. A <-> x R x ) ) |
|
| 5 | eqidd | |- ( ph -> dom R = dom R ) |
|
| 6 | 2 | ex | |- ( ph -> ( x R y -> y R x ) ) |
| 7 | 3 | ex | |- ( ph -> ( ( x R y /\ y R z ) -> x R z ) ) |
| 8 | 6 7 | jca | |- ( ph -> ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 9 | 8 | alrimiv | |- ( ph -> A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 10 | 9 | alrimiv | |- ( ph -> A. y A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 11 | 10 | alrimiv | |- ( ph -> A. x A. y A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 12 | dfer2 | |- ( R Er dom R <-> ( Rel R /\ dom R = dom R /\ A. x A. y A. z ( ( x R y -> y R x ) /\ ( ( x R y /\ y R z ) -> x R z ) ) ) ) |
|
| 13 | 1 5 11 12 | syl3anbrc | |- ( ph -> R Er dom R ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. dom R ) -> R Er dom R ) |
| 15 | simpr | |- ( ( ph /\ x e. dom R ) -> x e. dom R ) |
|
| 16 | 14 15 | erref | |- ( ( ph /\ x e. dom R ) -> x R x ) |
| 17 | 16 | ex | |- ( ph -> ( x e. dom R -> x R x ) ) |
| 18 | vex | |- x e. _V |
|
| 19 | 18 18 | breldm | |- ( x R x -> x e. dom R ) |
| 20 | 17 19 | impbid1 | |- ( ph -> ( x e. dom R <-> x R x ) ) |
| 21 | 20 4 | bitr4d | |- ( ph -> ( x e. dom R <-> x e. A ) ) |
| 22 | 21 | eqrdv | |- ( ph -> dom R = A ) |
| 23 | ereq2 | |- ( dom R = A -> ( R Er dom R <-> R Er A ) ) |
|
| 24 | 22 23 | syl | |- ( ph -> ( R Er dom R <-> R Er A ) ) |
| 25 | 13 24 | mpbid | |- ( ph -> R Er A ) |