This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ereq1 | |- ( R = S -> ( R Er A <-> S Er A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq | |- ( R = S -> ( Rel R <-> Rel S ) ) |
|
| 2 | dmeq | |- ( R = S -> dom R = dom S ) |
|
| 3 | 2 | eqeq1d | |- ( R = S -> ( dom R = A <-> dom S = A ) ) |
| 4 | cnveq | |- ( R = S -> `' R = `' S ) |
|
| 5 | coeq1 | |- ( R = S -> ( R o. R ) = ( S o. R ) ) |
|
| 6 | coeq2 | |- ( R = S -> ( S o. R ) = ( S o. S ) ) |
|
| 7 | 5 6 | eqtrd | |- ( R = S -> ( R o. R ) = ( S o. S ) ) |
| 8 | 4 7 | uneq12d | |- ( R = S -> ( `' R u. ( R o. R ) ) = ( `' S u. ( S o. S ) ) ) |
| 9 | 8 | sseq1d | |- ( R = S -> ( ( `' R u. ( R o. R ) ) C_ R <-> ( `' S u. ( S o. S ) ) C_ R ) ) |
| 10 | sseq2 | |- ( R = S -> ( ( `' S u. ( S o. S ) ) C_ R <-> ( `' S u. ( S o. S ) ) C_ S ) ) |
|
| 11 | 9 10 | bitrd | |- ( R = S -> ( ( `' R u. ( R o. R ) ) C_ R <-> ( `' S u. ( S o. S ) ) C_ S ) ) |
| 12 | 1 3 11 | 3anbi123d | |- ( R = S -> ( ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) <-> ( Rel S /\ dom S = A /\ ( `' S u. ( S o. S ) ) C_ S ) ) ) |
| 13 | df-er | |- ( R Er A <-> ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
|
| 14 | df-er | |- ( S Er A <-> ( Rel S /\ dom S = A /\ ( `' S u. ( S o. S ) ) C_ S ) ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( R = S -> ( R Er A <-> S Er A ) ) |