This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absef | |- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( exp ` ( Re ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 2 | 1 | fveq2d | |- ( A e. CC -> ( exp ` A ) = ( exp ` ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) ) |
| 3 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 4 | 3 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 5 | ax-icn | |- _i e. CC |
|
| 6 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 7 | 6 | recnd | |- ( A e. CC -> ( Im ` A ) e. CC ) |
| 8 | mulcl | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
|
| 9 | 5 7 8 | sylancr | |- ( A e. CC -> ( _i x. ( Im ` A ) ) e. CC ) |
| 10 | efadd | |- ( ( ( Re ` A ) e. CC /\ ( _i x. ( Im ` A ) ) e. CC ) -> ( exp ` ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) = ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) |
|
| 11 | 4 9 10 | syl2anc | |- ( A e. CC -> ( exp ` ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) = ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) |
| 12 | 2 11 | eqtrd | |- ( A e. CC -> ( exp ` A ) = ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) |
| 13 | 12 | fveq2d | |- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( abs ` ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) ) |
| 14 | 3 | reefcld | |- ( A e. CC -> ( exp ` ( Re ` A ) ) e. RR ) |
| 15 | 14 | recnd | |- ( A e. CC -> ( exp ` ( Re ` A ) ) e. CC ) |
| 16 | efcl | |- ( ( _i x. ( Im ` A ) ) e. CC -> ( exp ` ( _i x. ( Im ` A ) ) ) e. CC ) |
|
| 17 | 9 16 | syl | |- ( A e. CC -> ( exp ` ( _i x. ( Im ` A ) ) ) e. CC ) |
| 18 | 15 17 | absmuld | |- ( A e. CC -> ( abs ` ( ( exp ` ( Re ` A ) ) x. ( exp ` ( _i x. ( Im ` A ) ) ) ) ) = ( ( abs ` ( exp ` ( Re ` A ) ) ) x. ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) ) ) |
| 19 | absefi | |- ( ( Im ` A ) e. RR -> ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) = 1 ) |
|
| 20 | 6 19 | syl | |- ( A e. CC -> ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) = 1 ) |
| 21 | 20 | oveq2d | |- ( A e. CC -> ( ( abs ` ( exp ` ( Re ` A ) ) ) x. ( abs ` ( exp ` ( _i x. ( Im ` A ) ) ) ) ) = ( ( abs ` ( exp ` ( Re ` A ) ) ) x. 1 ) ) |
| 22 | 13 18 21 | 3eqtrd | |- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( ( abs ` ( exp ` ( Re ` A ) ) ) x. 1 ) ) |
| 23 | 15 | abscld | |- ( A e. CC -> ( abs ` ( exp ` ( Re ` A ) ) ) e. RR ) |
| 24 | 23 | recnd | |- ( A e. CC -> ( abs ` ( exp ` ( Re ` A ) ) ) e. CC ) |
| 25 | 24 | mulridd | |- ( A e. CC -> ( ( abs ` ( exp ` ( Re ` A ) ) ) x. 1 ) = ( abs ` ( exp ` ( Re ` A ) ) ) ) |
| 26 | efgt0 | |- ( ( Re ` A ) e. RR -> 0 < ( exp ` ( Re ` A ) ) ) |
|
| 27 | 3 26 | syl | |- ( A e. CC -> 0 < ( exp ` ( Re ` A ) ) ) |
| 28 | 0re | |- 0 e. RR |
|
| 29 | ltle | |- ( ( 0 e. RR /\ ( exp ` ( Re ` A ) ) e. RR ) -> ( 0 < ( exp ` ( Re ` A ) ) -> 0 <_ ( exp ` ( Re ` A ) ) ) ) |
|
| 30 | 28 14 29 | sylancr | |- ( A e. CC -> ( 0 < ( exp ` ( Re ` A ) ) -> 0 <_ ( exp ` ( Re ` A ) ) ) ) |
| 31 | 27 30 | mpd | |- ( A e. CC -> 0 <_ ( exp ` ( Re ` A ) ) ) |
| 32 | 14 31 | absidd | |- ( A e. CC -> ( abs ` ( exp ` ( Re ` A ) ) ) = ( exp ` ( Re ` A ) ) ) |
| 33 | 22 25 32 | 3eqtrd | |- ( A e. CC -> ( abs ` ( exp ` A ) ) = ( exp ` ( Re ` A ) ) ) |