This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps the set S , of complex numbers with imaginary part in the closed-above, open-below interval from -upi to pi one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eff1o.1 | |- S = ( `' Im " ( -u _pi (,] _pi ) ) |
|
| Assertion | eff1o | |- ( exp |` S ) : S -1-1-onto-> ( CC \ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1o.1 | |- S = ( `' Im " ( -u _pi (,] _pi ) ) |
|
| 2 | pire | |- _pi e. RR |
|
| 3 | 2 | renegcli | |- -u _pi e. RR |
| 4 | eqid | |- ( w e. ( -u _pi (,] _pi ) |-> ( exp ` ( _i x. w ) ) ) = ( w e. ( -u _pi (,] _pi ) |-> ( exp ` ( _i x. w ) ) ) |
|
| 5 | rexr | |- ( -u _pi e. RR -> -u _pi e. RR* ) |
|
| 6 | iocssre | |- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( -u _pi (,] _pi ) C_ RR ) |
|
| 7 | 5 2 6 | sylancl | |- ( -u _pi e. RR -> ( -u _pi (,] _pi ) C_ RR ) |
| 8 | picn | |- _pi e. CC |
|
| 9 | 8 | 2timesi | |- ( 2 x. _pi ) = ( _pi + _pi ) |
| 10 | 9 | oveq2i | |- ( -u _pi + ( 2 x. _pi ) ) = ( -u _pi + ( _pi + _pi ) ) |
| 11 | negpicn | |- -u _pi e. CC |
|
| 12 | 8 8 | addcli | |- ( _pi + _pi ) e. CC |
| 13 | 11 12 | addcomi | |- ( -u _pi + ( _pi + _pi ) ) = ( ( _pi + _pi ) + -u _pi ) |
| 14 | 12 8 | negsubi | |- ( ( _pi + _pi ) + -u _pi ) = ( ( _pi + _pi ) - _pi ) |
| 15 | 8 8 | pncan3oi | |- ( ( _pi + _pi ) - _pi ) = _pi |
| 16 | 14 15 | eqtri | |- ( ( _pi + _pi ) + -u _pi ) = _pi |
| 17 | 10 13 16 | 3eqtrri | |- _pi = ( -u _pi + ( 2 x. _pi ) ) |
| 18 | 17 | oveq2i | |- ( -u _pi (,] _pi ) = ( -u _pi (,] ( -u _pi + ( 2 x. _pi ) ) ) |
| 19 | 18 | efif1olem1 | |- ( ( -u _pi e. RR /\ ( x e. ( -u _pi (,] _pi ) /\ y e. ( -u _pi (,] _pi ) ) ) -> ( abs ` ( x - y ) ) < ( 2 x. _pi ) ) |
| 20 | 18 | efif1olem2 | |- ( ( -u _pi e. RR /\ z e. RR ) -> E. y e. ( -u _pi (,] _pi ) ( ( z - y ) / ( 2 x. _pi ) ) e. ZZ ) |
| 21 | 4 1 7 19 20 | eff1olem | |- ( -u _pi e. RR -> ( exp |` S ) : S -1-1-onto-> ( CC \ { 0 } ) ) |
| 22 | 3 21 | ax-mp | |- ( exp |` S ) : S -1-1-onto-> ( CC \ { 0 } ) |