This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres , there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like Re ( x ) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvres2 | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( S _D F ) |` B ) C_ ( B _D ( F |` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( ( S _D F ) |` B ) |
|
| 2 | 1 | a1i | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> Rel ( ( S _D F ) |` B ) ) |
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 4 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 5 | eqid | |- ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
|
| 6 | simp1l | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> S C_ CC ) |
|
| 7 | simp1r | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> F : A --> CC ) |
|
| 8 | simp2l | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> A C_ S ) |
|
| 9 | simp2r | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> B C_ S ) |
|
| 10 | simp3r | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> x ( S _D F ) y ) |
|
| 11 | 6 7 8 | dvcl | |- ( ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) /\ x ( S _D F ) y ) -> y e. CC ) |
| 12 | 10 11 | mpdan | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> y e. CC ) |
| 13 | simp3l | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> x e. B ) |
|
| 14 | 3 4 5 6 7 8 9 12 10 13 | dvres2lem | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) /\ ( x e. B /\ x ( S _D F ) y ) ) -> x ( B _D ( F |` B ) ) y ) |
| 15 | 14 | 3expia | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( x e. B /\ x ( S _D F ) y ) -> x ( B _D ( F |` B ) ) y ) ) |
| 16 | vex | |- y e. _V |
|
| 17 | 16 | brresi | |- ( x ( ( S _D F ) |` B ) y <-> ( x e. B /\ x ( S _D F ) y ) ) |
| 18 | df-br | |- ( x ( ( S _D F ) |` B ) y <-> <. x , y >. e. ( ( S _D F ) |` B ) ) |
|
| 19 | 17 18 | bitr3i | |- ( ( x e. B /\ x ( S _D F ) y ) <-> <. x , y >. e. ( ( S _D F ) |` B ) ) |
| 20 | df-br | |- ( x ( B _D ( F |` B ) ) y <-> <. x , y >. e. ( B _D ( F |` B ) ) ) |
|
| 21 | 15 19 20 | 3imtr3g | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( <. x , y >. e. ( ( S _D F ) |` B ) -> <. x , y >. e. ( B _D ( F |` B ) ) ) ) |
| 22 | 2 21 | relssdv | |- ( ( ( S C_ CC /\ F : A --> CC ) /\ ( A C_ S /\ B C_ S ) ) -> ( ( S _D F ) |` B ) C_ ( B _D ( F |` B ) ) ) |