This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnfval | |- ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | |- CC e. _V |
|
| 2 | 1 | elpw2 | |- ( S e. ~P CC <-> S C_ CC ) |
| 3 | oveq2 | |- ( s = S -> ( CC ^pm s ) = ( CC ^pm S ) ) |
|
| 4 | oveq1 | |- ( s = S -> ( s Dn f ) = ( S Dn f ) ) |
|
| 5 | 4 | fveq1d | |- ( s = S -> ( ( s Dn f ) ` n ) = ( ( S Dn f ) ` n ) ) |
| 6 | 5 | eleq1d | |- ( s = S -> ( ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) <-> ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) ) ) |
| 7 | 3 6 | rabeqbidv | |- ( s = S -> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) } = { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) |
| 8 | 7 | mpteq2dv | |- ( s = S -> ( n e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| 9 | df-cpn | |- C^n = ( s e. ~P CC |-> ( n e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
|
| 10 | nn0ex | |- NN0 e. _V |
|
| 11 | 10 | mptex | |- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) e. _V |
| 12 | 8 9 11 | fvmpt | |- ( S e. ~P CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
| 13 | 2 12 | sylbir | |- ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |