This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmresg | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` B ) e. ( A ^pm B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | |- ( F e. ( A ^pm C ) -> -. ( A ^pm C ) = (/) ) |
|
| 2 | fnpm | |- ^pm Fn ( _V X. _V ) |
|
| 3 | 2 | fndmi | |- dom ^pm = ( _V X. _V ) |
| 4 | 3 | ndmov | |- ( -. ( A e. _V /\ C e. _V ) -> ( A ^pm C ) = (/) ) |
| 5 | 1 4 | nsyl2 | |- ( F e. ( A ^pm C ) -> ( A e. _V /\ C e. _V ) ) |
| 6 | 5 | simpld | |- ( F e. ( A ^pm C ) -> A e. _V ) |
| 7 | 6 | adantl | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> A e. _V ) |
| 8 | simpl | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> B e. V ) |
|
| 9 | elpmi | |- ( F e. ( A ^pm C ) -> ( F : dom F --> A /\ dom F C_ C ) ) |
|
| 10 | 9 | simpld | |- ( F e. ( A ^pm C ) -> F : dom F --> A ) |
| 11 | 10 | adantl | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> F : dom F --> A ) |
| 12 | inss1 | |- ( dom F i^i B ) C_ dom F |
|
| 13 | fssres | |- ( ( F : dom F --> A /\ ( dom F i^i B ) C_ dom F ) -> ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> A ) |
|
| 14 | 11 12 13 | sylancl | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> A ) |
| 15 | ffun | |- ( F : dom F --> A -> Fun F ) |
|
| 16 | resres | |- ( ( F |` dom F ) |` B ) = ( F |` ( dom F i^i B ) ) |
|
| 17 | funrel | |- ( Fun F -> Rel F ) |
|
| 18 | resdm | |- ( Rel F -> ( F |` dom F ) = F ) |
|
| 19 | reseq1 | |- ( ( F |` dom F ) = F -> ( ( F |` dom F ) |` B ) = ( F |` B ) ) |
|
| 20 | 17 18 19 | 3syl | |- ( Fun F -> ( ( F |` dom F ) |` B ) = ( F |` B ) ) |
| 21 | 16 20 | eqtr3id | |- ( Fun F -> ( F |` ( dom F i^i B ) ) = ( F |` B ) ) |
| 22 | 11 15 21 | 3syl | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` ( dom F i^i B ) ) = ( F |` B ) ) |
| 23 | 22 | feq1d | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( ( F |` ( dom F i^i B ) ) : ( dom F i^i B ) --> A <-> ( F |` B ) : ( dom F i^i B ) --> A ) ) |
| 24 | 14 23 | mpbid | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` B ) : ( dom F i^i B ) --> A ) |
| 25 | inss2 | |- ( dom F i^i B ) C_ B |
|
| 26 | elpm2r | |- ( ( ( A e. _V /\ B e. V ) /\ ( ( F |` B ) : ( dom F i^i B ) --> A /\ ( dom F i^i B ) C_ B ) ) -> ( F |` B ) e. ( A ^pm B ) ) |
|
| 27 | 25 26 | mpanr2 | |- ( ( ( A e. _V /\ B e. V ) /\ ( F |` B ) : ( dom F i^i B ) --> A ) -> ( F |` B ) e. ( A ^pm B ) ) |
| 28 | 7 8 24 27 | syl21anc | |- ( ( B e. V /\ F e. ( A ^pm C ) ) -> ( F |` B ) e. ( A ^pm B ) ) |