This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldv | |- Rel ( S _D F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | |- Rel ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
|
| 2 | 1 | rgenw | |- A. x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) Rel ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 3 | reliun | |- ( Rel U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> A. x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) Rel ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
|
| 4 | 2 3 | mpbir | |- Rel U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 5 | df-rel | |- ( Rel U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( _V X. _V ) ) |
|
| 6 | 4 5 | mpbi | |- U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( _V X. _V ) |
| 7 | 6 | rgenw | |- A. f e. ( CC ^pm s ) U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( _V X. _V ) |
| 8 | 7 | rgenw | |- A. s e. ~P CC A. f e. ( CC ^pm s ) U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( _V X. _V ) |
| 9 | df-dv | |- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
|
| 10 | 9 | ovmptss | |- ( A. s e. ~P CC A. f e. ( CC ^pm s ) U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( _V X. _V ) -> ( S _D F ) C_ ( _V X. _V ) ) |
| 11 | 8 10 | ax-mp | |- ( S _D F ) C_ ( _V X. _V ) |
| 12 | df-rel | |- ( Rel ( S _D F ) <-> ( S _D F ) C_ ( _V X. _V ) ) |
|
| 13 | 11 12 | mpbir | |- Rel ( S _D F ) |