This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvid | |- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | |- ( _I |` CC ) : CC -1-1-onto-> CC |
|
| 2 | f1of | |- ( ( _I |` CC ) : CC -1-1-onto-> CC -> ( _I |` CC ) : CC --> CC ) |
|
| 3 | 1 2 | mp1i | |- ( T. -> ( _I |` CC ) : CC --> CC ) |
| 4 | simp2 | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> z e. CC ) |
|
| 5 | simp1 | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> x e. CC ) |
|
| 6 | 4 5 | subcld | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( z - x ) e. CC ) |
| 7 | simp3 | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> z =/= x ) |
|
| 8 | 4 5 7 | subne0d | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( z - x ) =/= 0 ) |
| 9 | fvresi | |- ( z e. CC -> ( ( _I |` CC ) ` z ) = z ) |
|
| 10 | fvresi | |- ( x e. CC -> ( ( _I |` CC ) ` x ) = x ) |
|
| 11 | 9 10 | oveqan12rd | |- ( ( x e. CC /\ z e. CC ) -> ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) = ( z - x ) ) |
| 12 | 11 | 3adant3 | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) = ( z - x ) ) |
| 13 | 6 8 12 | diveq1bd | |- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) / ( z - x ) ) = 1 ) |
| 14 | 13 | adantl | |- ( ( T. /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) / ( z - x ) ) = 1 ) |
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | 3 14 15 | dvidlem | |- ( T. -> ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) ) |
| 17 | 16 | mptru | |- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |