This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reverse of dvfsumrlim , when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum2.s | |- S = ( T (,) +oo ) |
|
| dvfsum2.z | |- Z = ( ZZ>= ` M ) |
||
| dvfsum2.m | |- ( ph -> M e. ZZ ) |
||
| dvfsum2.d | |- ( ph -> D e. RR ) |
||
| dvfsum2.u | |- ( ph -> U e. RR* ) |
||
| dvfsum2.md | |- ( ph -> M <_ ( D + 1 ) ) |
||
| dvfsum2.t | |- ( ph -> T e. RR ) |
||
| dvfsum2.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvfsum2.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvfsum2.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
||
| dvfsum2.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| dvfsum2.c | |- ( x = k -> B = C ) |
||
| dvfsum2.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B <_ C ) |
||
| dvfsum2.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
||
| dvfsum2.0 | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
||
| dvfsum2.1 | |- ( ph -> X e. S ) |
||
| dvfsum2.2 | |- ( ph -> Y e. S ) |
||
| dvfsum2.3 | |- ( ph -> D <_ X ) |
||
| dvfsum2.4 | |- ( ph -> X <_ Y ) |
||
| dvfsum2.5 | |- ( ph -> Y <_ U ) |
||
| dvfsum2.e | |- ( x = Y -> B = E ) |
||
| Assertion | dvfsum2 | |- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) <_ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum2.s | |- S = ( T (,) +oo ) |
|
| 2 | dvfsum2.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | dvfsum2.m | |- ( ph -> M e. ZZ ) |
|
| 4 | dvfsum2.d | |- ( ph -> D e. RR ) |
|
| 5 | dvfsum2.u | |- ( ph -> U e. RR* ) |
|
| 6 | dvfsum2.md | |- ( ph -> M <_ ( D + 1 ) ) |
|
| 7 | dvfsum2.t | |- ( ph -> T e. RR ) |
|
| 8 | dvfsum2.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 9 | dvfsum2.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 10 | dvfsum2.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
|
| 11 | dvfsum2.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 12 | dvfsum2.c | |- ( x = k -> B = C ) |
|
| 13 | dvfsum2.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B <_ C ) |
|
| 14 | dvfsum2.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
|
| 15 | dvfsum2.0 | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
|
| 16 | dvfsum2.1 | |- ( ph -> X e. S ) |
|
| 17 | dvfsum2.2 | |- ( ph -> Y e. S ) |
|
| 18 | dvfsum2.3 | |- ( ph -> D <_ X ) |
|
| 19 | dvfsum2.4 | |- ( ph -> X <_ Y ) |
|
| 20 | dvfsum2.5 | |- ( ph -> Y <_ U ) |
|
| 21 | dvfsum2.e | |- ( x = Y -> B = E ) |
|
| 22 | fzfid | |- ( ph -> ( M ... ( |_ ` Y ) ) e. Fin ) |
|
| 23 | 10 | ralrimiva | |- ( ph -> A. x e. Z B e. RR ) |
| 24 | elfzuz | |- ( k e. ( M ... ( |_ ` Y ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 25 | 24 2 | eleqtrrdi | |- ( k e. ( M ... ( |_ ` Y ) ) -> k e. Z ) |
| 26 | 12 | eleq1d | |- ( x = k -> ( B e. RR <-> C e. RR ) ) |
| 27 | 26 | rspccva | |- ( ( A. x e. Z B e. RR /\ k e. Z ) -> C e. RR ) |
| 28 | 23 25 27 | syl2an | |- ( ( ph /\ k e. ( M ... ( |_ ` Y ) ) ) -> C e. RR ) |
| 29 | 22 28 | fsumrecl | |- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) C e. RR ) |
| 30 | 8 | ralrimiva | |- ( ph -> A. x e. S A e. RR ) |
| 31 | nfcsb1v | |- F/_ x [_ Y / x ]_ A |
|
| 32 | 31 | nfel1 | |- F/ x [_ Y / x ]_ A e. RR |
| 33 | csbeq1a | |- ( x = Y -> A = [_ Y / x ]_ A ) |
|
| 34 | 33 | eleq1d | |- ( x = Y -> ( A e. RR <-> [_ Y / x ]_ A e. RR ) ) |
| 35 | 32 34 | rspc | |- ( Y e. S -> ( A. x e. S A e. RR -> [_ Y / x ]_ A e. RR ) ) |
| 36 | 17 30 35 | sylc | |- ( ph -> [_ Y / x ]_ A e. RR ) |
| 37 | 29 36 | resubcld | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. RR ) |
| 38 | nfcv | |- F/_ x Y |
|
| 39 | nfcv | |- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) C |
|
| 40 | nfcv | |- F/_ x - |
|
| 41 | 39 40 31 | nfov | |- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) |
| 42 | fveq2 | |- ( x = Y -> ( |_ ` x ) = ( |_ ` Y ) ) |
|
| 43 | 42 | oveq2d | |- ( x = Y -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` Y ) ) ) |
| 44 | 43 | sumeq1d | |- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
| 45 | 44 33 | oveq12d | |- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 46 | 38 41 45 14 | fvmptf | |- ( ( Y e. S /\ ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. RR ) -> ( G ` Y ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 47 | 17 37 46 | syl2anc | |- ( ph -> ( G ` Y ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 48 | fzfid | |- ( ph -> ( M ... ( |_ ` X ) ) e. Fin ) |
|
| 49 | elfzuz | |- ( k e. ( M ... ( |_ ` X ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 50 | 49 2 | eleqtrrdi | |- ( k e. ( M ... ( |_ ` X ) ) -> k e. Z ) |
| 51 | 23 50 27 | syl2an | |- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. RR ) |
| 52 | 48 51 | fsumrecl | |- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. RR ) |
| 53 | nfcsb1v | |- F/_ x [_ X / x ]_ A |
|
| 54 | 53 | nfel1 | |- F/ x [_ X / x ]_ A e. RR |
| 55 | csbeq1a | |- ( x = X -> A = [_ X / x ]_ A ) |
|
| 56 | 55 | eleq1d | |- ( x = X -> ( A e. RR <-> [_ X / x ]_ A e. RR ) ) |
| 57 | 54 56 | rspc | |- ( X e. S -> ( A. x e. S A e. RR -> [_ X / x ]_ A e. RR ) ) |
| 58 | 16 30 57 | sylc | |- ( ph -> [_ X / x ]_ A e. RR ) |
| 59 | 52 58 | resubcld | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. RR ) |
| 60 | nfcv | |- F/_ x X |
|
| 61 | nfcv | |- F/_ x sum_ k e. ( M ... ( |_ ` X ) ) C |
|
| 62 | 61 40 53 | nfov | |- F/_ x ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) |
| 63 | fveq2 | |- ( x = X -> ( |_ ` x ) = ( |_ ` X ) ) |
|
| 64 | 63 | oveq2d | |- ( x = X -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` X ) ) ) |
| 65 | 64 | sumeq1d | |- ( x = X -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 66 | 65 55 | oveq12d | |- ( x = X -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 67 | 60 62 66 14 | fvmptf | |- ( ( X e. S /\ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. RR ) -> ( G ` X ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 68 | 16 59 67 | syl2anc | |- ( ph -> ( G ` X ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 69 | 47 68 | oveq12d | |- ( ph -> ( ( G ` Y ) - ( G ` X ) ) = ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 70 | 69 | fveq2d | |- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 71 | 37 | recnd | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. CC ) |
| 72 | 59 | recnd | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. CC ) |
| 73 | 71 72 | abssubd | |- ( ph -> ( abs ` ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 74 | 70 73 | eqtrd | |- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 75 | ioossre | |- ( T (,) +oo ) C_ RR |
|
| 76 | 1 75 | eqsstri | |- S C_ RR |
| 77 | 76 | a1i | |- ( ph -> S C_ RR ) |
| 78 | 77 8 9 11 | dvmptrecl | |- ( ( ph /\ x e. S ) -> B e. RR ) |
| 79 | 78 | ralrimiva | |- ( ph -> A. x e. S B e. RR ) |
| 80 | 21 | eleq1d | |- ( x = Y -> ( B e. RR <-> E e. RR ) ) |
| 81 | 80 | rspcv | |- ( Y e. S -> ( A. x e. S B e. RR -> E e. RR ) ) |
| 82 | 17 79 81 | sylc | |- ( ph -> E e. RR ) |
| 83 | 37 82 | resubcld | |- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) e. RR ) |
| 84 | 76 16 | sselid | |- ( ph -> X e. RR ) |
| 85 | reflcl | |- ( X e. RR -> ( |_ ` X ) e. RR ) |
|
| 86 | 84 85 | syl | |- ( ph -> ( |_ ` X ) e. RR ) |
| 87 | 84 86 | resubcld | |- ( ph -> ( X - ( |_ ` X ) ) e. RR ) |
| 88 | nfv | |- F/ m B e. RR |
|
| 89 | nfcsb1v | |- F/_ x [_ m / x ]_ B |
|
| 90 | 89 | nfel1 | |- F/ x [_ m / x ]_ B e. RR |
| 91 | csbeq1a | |- ( x = m -> B = [_ m / x ]_ B ) |
|
| 92 | 91 | eleq1d | |- ( x = m -> ( B e. RR <-> [_ m / x ]_ B e. RR ) ) |
| 93 | 88 90 92 | cbvralw | |- ( A. x e. S B e. RR <-> A. m e. S [_ m / x ]_ B e. RR ) |
| 94 | 79 93 | sylib | |- ( ph -> A. m e. S [_ m / x ]_ B e. RR ) |
| 95 | csbeq1 | |- ( m = X -> [_ m / x ]_ B = [_ X / x ]_ B ) |
|
| 96 | 95 | eleq1d | |- ( m = X -> ( [_ m / x ]_ B e. RR <-> [_ X / x ]_ B e. RR ) ) |
| 97 | 96 | rspcv | |- ( X e. S -> ( A. m e. S [_ m / x ]_ B e. RR -> [_ X / x ]_ B e. RR ) ) |
| 98 | 16 94 97 | sylc | |- ( ph -> [_ X / x ]_ B e. RR ) |
| 99 | 87 98 | remulcld | |- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) e. RR ) |
| 100 | 99 59 | readdcld | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. RR ) |
| 101 | 100 98 | resubcld | |- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) e. RR ) |
| 102 | 76 17 | sselid | |- ( ph -> Y e. RR ) |
| 103 | reflcl | |- ( Y e. RR -> ( |_ ` Y ) e. RR ) |
|
| 104 | 102 103 | syl | |- ( ph -> ( |_ ` Y ) e. RR ) |
| 105 | 102 104 | resubcld | |- ( ph -> ( Y - ( |_ ` Y ) ) e. RR ) |
| 106 | 105 82 | remulcld | |- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) e. RR ) |
| 107 | 106 37 | readdcld | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. RR ) |
| 108 | 107 82 | resubcld | |- ( ph -> ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) e. RR ) |
| 109 | fracge0 | |- ( Y e. RR -> 0 <_ ( Y - ( |_ ` Y ) ) ) |
|
| 110 | 102 109 | syl | |- ( ph -> 0 <_ ( Y - ( |_ ` Y ) ) ) |
| 111 | 15 | expr | |- ( ( ph /\ x e. S ) -> ( D <_ x -> 0 <_ B ) ) |
| 112 | 111 | ralrimiva | |- ( ph -> A. x e. S ( D <_ x -> 0 <_ B ) ) |
| 113 | 4 84 102 18 19 | letrd | |- ( ph -> D <_ Y ) |
| 114 | breq2 | |- ( x = Y -> ( D <_ x <-> D <_ Y ) ) |
|
| 115 | 21 | breq2d | |- ( x = Y -> ( 0 <_ B <-> 0 <_ E ) ) |
| 116 | 114 115 | imbi12d | |- ( x = Y -> ( ( D <_ x -> 0 <_ B ) <-> ( D <_ Y -> 0 <_ E ) ) ) |
| 117 | 116 | rspcv | |- ( Y e. S -> ( A. x e. S ( D <_ x -> 0 <_ B ) -> ( D <_ Y -> 0 <_ E ) ) ) |
| 118 | 17 112 113 117 | syl3c | |- ( ph -> 0 <_ E ) |
| 119 | 105 82 110 118 | mulge0d | |- ( ph -> 0 <_ ( ( Y - ( |_ ` Y ) ) x. E ) ) |
| 120 | 37 106 | addge02d | |- ( ph -> ( 0 <_ ( ( Y - ( |_ ` Y ) ) x. E ) <-> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 121 | 119 120 | mpbid | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 122 | 37 107 82 121 | lesub1dd | |- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) |
| 123 | 8 | renegcld | |- ( ( ph /\ x e. S ) -> -u A e. RR ) |
| 124 | 78 | renegcld | |- ( ( ph /\ x e. S ) -> -u B e. RR ) |
| 125 | 10 | renegcld | |- ( ( ph /\ x e. Z ) -> -u B e. RR ) |
| 126 | reelprrecn | |- RR e. { RR , CC } |
|
| 127 | 126 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 128 | 8 | recnd | |- ( ( ph /\ x e. S ) -> A e. CC ) |
| 129 | 127 128 9 11 | dvmptneg | |- ( ph -> ( RR _D ( x e. S |-> -u A ) ) = ( x e. S |-> -u B ) ) |
| 130 | 12 | negeqd | |- ( x = k -> -u B = -u C ) |
| 131 | 78 | adantrr | |- ( ( ph /\ ( x e. S /\ k e. S ) ) -> B e. RR ) |
| 132 | 131 | 3adant3 | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B e. RR ) |
| 133 | simp2r | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> k e. S ) |
|
| 134 | 79 | 3ad2ant1 | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> A. x e. S B e. RR ) |
| 135 | 26 | rspcv | |- ( k e. S -> ( A. x e. S B e. RR -> C e. RR ) ) |
| 136 | 133 134 135 | sylc | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> C e. RR ) |
| 137 | 132 136 | lenegd | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> ( B <_ C <-> -u C <_ -u B ) ) |
| 138 | 13 137 | mpbid | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> -u C <_ -u B ) |
| 139 | eqid | |- ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) = ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) |
|
| 140 | 1 2 3 4 6 7 123 124 125 129 130 5 138 139 16 17 18 19 20 | dvfsumlem3 | |- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) <_ ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) /\ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) <_ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) ) ) |
| 141 | 140 | simprd | |- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) <_ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) ) |
| 142 | 87 | recnd | |- ( ph -> ( X - ( |_ ` X ) ) e. CC ) |
| 143 | 98 | recnd | |- ( ph -> [_ X / x ]_ B e. CC ) |
| 144 | 142 143 | mulneg2d | |- ( ph -> ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) = -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) ) |
| 145 | 52 | recnd | |- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. CC ) |
| 146 | 58 | recnd | |- ( ph -> [_ X / x ]_ A e. CC ) |
| 147 | 145 146 | neg2subd | |- ( ph -> ( -u sum_ k e. ( M ... ( |_ ` X ) ) C - -u [_ X / x ]_ A ) = ( [_ X / x ]_ A - sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
| 148 | 51 | recnd | |- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. CC ) |
| 149 | 48 148 | fsumneg | |- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) -u C = -u sum_ k e. ( M ... ( |_ ` X ) ) C ) |
| 150 | 149 | oveq1d | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) = ( -u sum_ k e. ( M ... ( |_ ` X ) ) C - -u [_ X / x ]_ A ) ) |
| 151 | 145 146 | negsubdi2d | |- ( ph -> -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) = ( [_ X / x ]_ A - sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
| 152 | 147 150 151 | 3eqtr4d | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) = -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 153 | 144 152 | oveq12d | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) = ( -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 154 | 99 | recnd | |- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) e. CC ) |
| 155 | 154 72 | negdid | |- ( ph -> -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) = ( -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 156 | 153 155 | eqtr4d | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) = -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 157 | 100 | renegcld | |- ( ph -> -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. RR ) |
| 158 | 156 157 | eqeltrd | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) e. RR ) |
| 159 | nfcv | |- F/_ x ( X - ( |_ ` X ) ) |
|
| 160 | nfcv | |- F/_ x x. |
|
| 161 | nfcsb1v | |- F/_ x [_ X / x ]_ B |
|
| 162 | 161 | nfneg | |- F/_ x -u [_ X / x ]_ B |
| 163 | 159 160 162 | nfov | |- F/_ x ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) |
| 164 | nfcv | |- F/_ x + |
|
| 165 | nfcv | |- F/_ x sum_ k e. ( M ... ( |_ ` X ) ) -u C |
|
| 166 | 53 | nfneg | |- F/_ x -u [_ X / x ]_ A |
| 167 | 165 40 166 | nfov | |- F/_ x ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) |
| 168 | 163 164 167 | nfov | |- F/_ x ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) |
| 169 | id | |- ( x = X -> x = X ) |
|
| 170 | 169 63 | oveq12d | |- ( x = X -> ( x - ( |_ ` x ) ) = ( X - ( |_ ` X ) ) ) |
| 171 | csbeq1a | |- ( x = X -> B = [_ X / x ]_ B ) |
|
| 172 | 171 | negeqd | |- ( x = X -> -u B = -u [_ X / x ]_ B ) |
| 173 | 170 172 | oveq12d | |- ( x = X -> ( ( x - ( |_ ` x ) ) x. -u B ) = ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) ) |
| 174 | 64 | sumeq1d | |- ( x = X -> sum_ k e. ( M ... ( |_ ` x ) ) -u C = sum_ k e. ( M ... ( |_ ` X ) ) -u C ) |
| 175 | 55 | negeqd | |- ( x = X -> -u A = -u [_ X / x ]_ A ) |
| 176 | 174 175 | oveq12d | |- ( x = X -> ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) |
| 177 | 173 176 | oveq12d | |- ( x = X -> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
| 178 | 60 168 177 139 | fvmptf | |- ( ( X e. S /\ ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) e. RR ) -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
| 179 | 16 158 178 | syl2anc | |- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
| 180 | 179 156 | eqtrd | |- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 181 | csbnegg | |- ( X e. S -> [_ X / x ]_ -u B = -u [_ X / x ]_ B ) |
|
| 182 | 16 181 | syl | |- ( ph -> [_ X / x ]_ -u B = -u [_ X / x ]_ B ) |
| 183 | 180 182 | oveq12d | |- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) = ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) ) |
| 184 | 105 | recnd | |- ( ph -> ( Y - ( |_ ` Y ) ) e. CC ) |
| 185 | 82 | recnd | |- ( ph -> E e. CC ) |
| 186 | 184 185 | mulneg2d | |- ( ph -> ( ( Y - ( |_ ` Y ) ) x. -u E ) = -u ( ( Y - ( |_ ` Y ) ) x. E ) ) |
| 187 | 29 | recnd | |- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) C e. CC ) |
| 188 | 36 | recnd | |- ( ph -> [_ Y / x ]_ A e. CC ) |
| 189 | 187 188 | neg2subd | |- ( ph -> ( -u sum_ k e. ( M ... ( |_ ` Y ) ) C - -u [_ Y / x ]_ A ) = ( [_ Y / x ]_ A - sum_ k e. ( M ... ( |_ ` Y ) ) C ) ) |
| 190 | 28 | recnd | |- ( ( ph /\ k e. ( M ... ( |_ ` Y ) ) ) -> C e. CC ) |
| 191 | 22 190 | fsumneg | |- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) -u C = -u sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
| 192 | 191 | oveq1d | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) = ( -u sum_ k e. ( M ... ( |_ ` Y ) ) C - -u [_ Y / x ]_ A ) ) |
| 193 | 187 188 | negsubdi2d | |- ( ph -> -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( [_ Y / x ]_ A - sum_ k e. ( M ... ( |_ ` Y ) ) C ) ) |
| 194 | 189 192 193 | 3eqtr4d | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) = -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
| 195 | 186 194 | oveq12d | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) = ( -u ( ( Y - ( |_ ` Y ) ) x. E ) + -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 196 | 106 | recnd | |- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) e. CC ) |
| 197 | 196 71 | negdid | |- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( -u ( ( Y - ( |_ ` Y ) ) x. E ) + -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 198 | 195 197 | eqtr4d | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) = -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 199 | 107 | renegcld | |- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. RR ) |
| 200 | 198 199 | eqeltrd | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) e. RR ) |
| 201 | nfcv | |- F/_ x ( ( Y - ( |_ ` Y ) ) x. -u E ) |
|
| 202 | nfcv | |- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) -u C |
|
| 203 | 31 | nfneg | |- F/_ x -u [_ Y / x ]_ A |
| 204 | 202 40 203 | nfov | |- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) |
| 205 | 201 164 204 | nfov | |- F/_ x ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) |
| 206 | id | |- ( x = Y -> x = Y ) |
|
| 207 | 206 42 | oveq12d | |- ( x = Y -> ( x - ( |_ ` x ) ) = ( Y - ( |_ ` Y ) ) ) |
| 208 | 21 | negeqd | |- ( x = Y -> -u B = -u E ) |
| 209 | 207 208 | oveq12d | |- ( x = Y -> ( ( x - ( |_ ` x ) ) x. -u B ) = ( ( Y - ( |_ ` Y ) ) x. -u E ) ) |
| 210 | 43 | sumeq1d | |- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) -u C = sum_ k e. ( M ... ( |_ ` Y ) ) -u C ) |
| 211 | 33 | negeqd | |- ( x = Y -> -u A = -u [_ Y / x ]_ A ) |
| 212 | 210 211 | oveq12d | |- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) |
| 213 | 209 212 | oveq12d | |- ( x = Y -> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
| 214 | 38 205 213 139 | fvmptf | |- ( ( Y e. S /\ ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) e. RR ) -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
| 215 | 17 200 214 | syl2anc | |- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
| 216 | 215 198 | eqtrd | |- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 217 | 208 | adantl | |- ( ( ph /\ x = Y ) -> -u B = -u E ) |
| 218 | 17 217 | csbied | |- ( ph -> [_ Y / x ]_ -u B = -u E ) |
| 219 | 216 218 | oveq12d | |- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) = ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) ) |
| 220 | 141 183 219 | 3brtr3d | |- ( ph -> ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) <_ ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) ) |
| 221 | 100 | recnd | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. CC ) |
| 222 | 221 143 | neg2subd | |- ( ph -> ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) = ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 223 | 107 | recnd | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. CC ) |
| 224 | 223 185 | neg2subd | |- ( ph -> ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) = ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 225 | 220 222 224 | 3brtr3d | |- ( ph -> ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) <_ ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 226 | 221 143 | negsubdi2d | |- ( ph -> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) = ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 227 | 223 185 | negsubdi2d | |- ( ph -> -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) = ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
| 228 | 225 226 227 | 3brtr4d | |- ( ph -> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) |
| 229 | 108 101 | lenegd | |- ( ph -> ( ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <-> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) ) |
| 230 | 228 229 | mpbird | |- ( ph -> ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) ) |
| 231 | 83 108 101 122 230 | letrd | |- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) ) |
| 232 | 1red | |- ( ph -> 1 e. RR ) |
|
| 233 | nfv | |- F/ x D <_ X |
|
| 234 | nfcv | |- F/_ x 0 |
|
| 235 | nfcv | |- F/_ x <_ |
|
| 236 | 234 235 161 | nfbr | |- F/ x 0 <_ [_ X / x ]_ B |
| 237 | 233 236 | nfim | |- F/ x ( D <_ X -> 0 <_ [_ X / x ]_ B ) |
| 238 | breq2 | |- ( x = X -> ( D <_ x <-> D <_ X ) ) |
|
| 239 | 171 | breq2d | |- ( x = X -> ( 0 <_ B <-> 0 <_ [_ X / x ]_ B ) ) |
| 240 | 238 239 | imbi12d | |- ( x = X -> ( ( D <_ x -> 0 <_ B ) <-> ( D <_ X -> 0 <_ [_ X / x ]_ B ) ) ) |
| 241 | 237 240 | rspc | |- ( X e. S -> ( A. x e. S ( D <_ x -> 0 <_ B ) -> ( D <_ X -> 0 <_ [_ X / x ]_ B ) ) ) |
| 242 | 16 112 18 241 | syl3c | |- ( ph -> 0 <_ [_ X / x ]_ B ) |
| 243 | fracle1 | |- ( X e. RR -> ( X - ( |_ ` X ) ) <_ 1 ) |
|
| 244 | 84 243 | syl | |- ( ph -> ( X - ( |_ ` X ) ) <_ 1 ) |
| 245 | 87 232 98 242 244 | lemul1ad | |- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <_ ( 1 x. [_ X / x ]_ B ) ) |
| 246 | 143 | mullidd | |- ( ph -> ( 1 x. [_ X / x ]_ B ) = [_ X / x ]_ B ) |
| 247 | 245 246 | breqtrd | |- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <_ [_ X / x ]_ B ) |
| 248 | 99 98 59 247 | leadd1dd | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( [_ X / x ]_ B + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 249 | 100 98 59 | lesubadd2d | |- ( ph -> ( ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <-> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( [_ X / x ]_ B + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 250 | 248 249 | mpbird | |- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 251 | 83 101 59 231 250 | letrd | |- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
| 252 | 37 82 | readdcld | |- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) e. RR ) |
| 253 | fracge0 | |- ( X e. RR -> 0 <_ ( X - ( |_ ` X ) ) ) |
|
| 254 | 84 253 | syl | |- ( ph -> 0 <_ ( X - ( |_ ` X ) ) ) |
| 255 | 87 98 254 242 | mulge0d | |- ( ph -> 0 <_ ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) ) |
| 256 | 59 99 | addge02d | |- ( ph -> ( 0 <_ ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <-> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 257 | 255 256 | mpbid | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 258 | 140 | simpld | |- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) <_ ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) ) |
| 259 | 258 216 180 | 3brtr3d | |- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
| 260 | 100 107 | lenegd | |- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <-> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
| 261 | 259 260 | mpbird | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 262 | fracle1 | |- ( Y e. RR -> ( Y - ( |_ ` Y ) ) <_ 1 ) |
|
| 263 | 102 262 | syl | |- ( ph -> ( Y - ( |_ ` Y ) ) <_ 1 ) |
| 264 | 105 232 82 118 263 | lemul1ad | |- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) <_ ( 1 x. E ) ) |
| 265 | 185 | mullidd | |- ( ph -> ( 1 x. E ) = E ) |
| 266 | 264 265 | breqtrd | |- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) <_ E ) |
| 267 | 106 82 37 266 | leadd1dd | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ ( E + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
| 268 | 185 71 | addcomd | |- ( ph -> ( E + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 269 | 267 268 | breqtrd | |- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 270 | 100 107 252 261 269 | letrd | |- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 271 | 59 100 252 257 270 | letrd | |- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
| 272 | 59 37 82 | absdifled | |- ( ph -> ( ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) <_ E <-> ( ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) /\ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) ) ) |
| 273 | 251 271 272 | mpbir2and | |- ( ph -> ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) <_ E ) |
| 274 | 74 273 | eqbrtrd | |- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) <_ E ) |