This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumneg.1 | |- ( ph -> A e. Fin ) |
|
| fsumneg.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fsumneg | |- ( ph -> sum_ k e. A -u B = -u sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumneg.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumneg.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | neg1cn | |- -u 1 e. CC |
|
| 4 | 3 | a1i | |- ( ph -> -u 1 e. CC ) |
| 5 | 1 4 2 | fsummulc2 | |- ( ph -> ( -u 1 x. sum_ k e. A B ) = sum_ k e. A ( -u 1 x. B ) ) |
| 6 | 1 2 | fsumcl | |- ( ph -> sum_ k e. A B e. CC ) |
| 7 | 6 | mulm1d | |- ( ph -> ( -u 1 x. sum_ k e. A B ) = -u sum_ k e. A B ) |
| 8 | 2 | mulm1d | |- ( ( ph /\ k e. A ) -> ( -u 1 x. B ) = -u B ) |
| 9 | 8 | sumeq2dv | |- ( ph -> sum_ k e. A ( -u 1 x. B ) = sum_ k e. A -u B ) |
| 10 | 5 7 9 | 3eqtr3rd | |- ( ph -> sum_ k e. A -u B = -u sum_ k e. A B ) |