This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvexp2 | |- ( N e. NN0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | dvexp | |- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
|
| 3 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 4 | 3 | neneqd | |- ( N e. NN -> -. N = 0 ) |
| 5 | 4 | iffalsed | |- ( N e. NN -> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
| 6 | 5 | mpteq2dv | |- ( N e. NN -> ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 7 | 2 6 | eqtr4d | |- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 8 | oveq2 | |- ( N = 0 -> ( x ^ N ) = ( x ^ 0 ) ) |
|
| 9 | exp0 | |- ( x e. CC -> ( x ^ 0 ) = 1 ) |
|
| 10 | 8 9 | sylan9eq | |- ( ( N = 0 /\ x e. CC ) -> ( x ^ N ) = 1 ) |
| 11 | 10 | mpteq2dva | |- ( N = 0 -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> 1 ) ) |
| 12 | fconstmpt | |- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
|
| 13 | 11 12 | eqtr4di | |- ( N = 0 -> ( x e. CC |-> ( x ^ N ) ) = ( CC X. { 1 } ) ) |
| 14 | 13 | oveq2d | |- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( CC _D ( CC X. { 1 } ) ) ) |
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | dvconst | |- ( 1 e. CC -> ( CC _D ( CC X. { 1 } ) ) = ( CC X. { 0 } ) ) |
|
| 17 | 15 16 | ax-mp | |- ( CC _D ( CC X. { 1 } ) ) = ( CC X. { 0 } ) |
| 18 | 14 17 | eqtrdi | |- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( CC X. { 0 } ) ) |
| 19 | fconstmpt | |- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
|
| 20 | 18 19 | eqtrdi | |- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> 0 ) ) |
| 21 | iftrue | |- ( N = 0 -> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) = 0 ) |
|
| 22 | 21 | mpteq2dv | |- ( N = 0 -> ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) = ( x e. CC |-> 0 ) ) |
| 23 | 20 22 | eqtr4d | |- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 24 | 7 23 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 25 | 1 24 | sylbi | |- ( N e. NN0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |