This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdivcncf.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvdivcncf.f | |- ( ph -> F : X --> CC ) |
||
| dvdivcncf.g | |- ( ph -> G : X --> ( CC \ { 0 } ) ) |
||
| dvdivcncf.fdv | |- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
||
| dvdivcncf.gdv | |- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
||
| Assertion | dvdivcncf | |- ( ph -> ( S _D ( F oF / G ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivcncf.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvdivcncf.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvdivcncf.g | |- ( ph -> G : X --> ( CC \ { 0 } ) ) |
|
| 4 | dvdivcncf.fdv | |- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
|
| 5 | dvdivcncf.gdv | |- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
|
| 6 | cncff | |- ( ( S _D F ) e. ( X -cn-> CC ) -> ( S _D F ) : X --> CC ) |
|
| 7 | fdm | |- ( ( S _D F ) : X --> CC -> dom ( S _D F ) = X ) |
|
| 8 | 4 6 7 | 3syl | |- ( ph -> dom ( S _D F ) = X ) |
| 9 | cncff | |- ( ( S _D G ) e. ( X -cn-> CC ) -> ( S _D G ) : X --> CC ) |
|
| 10 | fdm | |- ( ( S _D G ) : X --> CC -> dom ( S _D G ) = X ) |
|
| 11 | 5 9 10 | 3syl | |- ( ph -> dom ( S _D G ) = X ) |
| 12 | 1 2 3 8 11 | dvdivf | |- ( ph -> ( S _D ( F oF / G ) ) = ( ( ( ( S _D F ) oF x. G ) oF - ( ( S _D G ) oF x. F ) ) oF / ( G oF x. G ) ) ) |
| 13 | ax-resscn | |- RR C_ CC |
|
| 14 | sseq1 | |- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
|
| 15 | 13 14 | mpbiri | |- ( S = RR -> S C_ CC ) |
| 16 | eqimss | |- ( S = CC -> S C_ CC ) |
|
| 17 | 15 16 | pm3.2i | |- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
| 18 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 19 | 1 18 | syl | |- ( ph -> ( S = RR \/ S = CC ) ) |
| 20 | pm3.44 | |- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
|
| 21 | 17 19 20 | mpsyl | |- ( ph -> S C_ CC ) |
| 22 | difssd | |- ( ph -> ( CC \ { 0 } ) C_ CC ) |
|
| 23 | 3 22 | fssd | |- ( ph -> G : X --> CC ) |
| 24 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 25 | 8 24 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 26 | dvcn | |- ( ( ( S C_ CC /\ G : X --> CC /\ X C_ S ) /\ dom ( S _D G ) = X ) -> G e. ( X -cn-> CC ) ) |
|
| 27 | 21 23 25 11 26 | syl31anc | |- ( ph -> G e. ( X -cn-> CC ) ) |
| 28 | 4 27 | mulcncff | |- ( ph -> ( ( S _D F ) oF x. G ) e. ( X -cn-> CC ) ) |
| 29 | dvcn | |- ( ( ( S C_ CC /\ F : X --> CC /\ X C_ S ) /\ dom ( S _D F ) = X ) -> F e. ( X -cn-> CC ) ) |
|
| 30 | 21 2 25 8 29 | syl31anc | |- ( ph -> F e. ( X -cn-> CC ) ) |
| 31 | 5 30 | mulcncff | |- ( ph -> ( ( S _D G ) oF x. F ) e. ( X -cn-> CC ) ) |
| 32 | 28 31 | subcncff | |- ( ph -> ( ( ( S _D F ) oF x. G ) oF - ( ( S _D G ) oF x. F ) ) e. ( X -cn-> CC ) ) |
| 33 | eldifi | |- ( x e. ( CC \ { 0 } ) -> x e. CC ) |
|
| 34 | 33 | adantr | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) |
| 35 | eldifi | |- ( y e. ( CC \ { 0 } ) -> y e. CC ) |
|
| 36 | 35 | adantl | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 37 | 34 36 | mulcld | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. CC ) |
| 38 | eldifsni | |- ( x e. ( CC \ { 0 } ) -> x =/= 0 ) |
|
| 39 | 38 | adantr | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> x =/= 0 ) |
| 40 | eldifsni | |- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
|
| 41 | 40 | adantl | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 42 | 34 36 39 41 | mulne0d | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) =/= 0 ) |
| 43 | eldifsn | |- ( ( x x. y ) e. ( CC \ { 0 } ) <-> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
|
| 44 | 37 42 43 | sylanbrc | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 45 | 44 | adantl | |- ( ( ph /\ ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 46 | 1 25 | ssexd | |- ( ph -> X e. _V ) |
| 47 | inidm | |- ( X i^i X ) = X |
|
| 48 | 45 3 3 46 46 47 | off | |- ( ph -> ( G oF x. G ) : X --> ( CC \ { 0 } ) ) |
| 49 | 27 27 | mulcncff | |- ( ph -> ( G oF x. G ) e. ( X -cn-> CC ) ) |
| 50 | cncfcdm | |- ( ( ( CC \ { 0 } ) C_ CC /\ ( G oF x. G ) e. ( X -cn-> CC ) ) -> ( ( G oF x. G ) e. ( X -cn-> ( CC \ { 0 } ) ) <-> ( G oF x. G ) : X --> ( CC \ { 0 } ) ) ) |
|
| 51 | 22 49 50 | syl2anc | |- ( ph -> ( ( G oF x. G ) e. ( X -cn-> ( CC \ { 0 } ) ) <-> ( G oF x. G ) : X --> ( CC \ { 0 } ) ) ) |
| 52 | 48 51 | mpbird | |- ( ph -> ( G oF x. G ) e. ( X -cn-> ( CC \ { 0 } ) ) ) |
| 53 | 32 52 | divcncff | |- ( ph -> ( ( ( ( S _D F ) oF x. G ) oF - ( ( S _D G ) oF x. F ) ) oF / ( G oF x. G ) ) e. ( X -cn-> CC ) ) |
| 54 | 12 53 | eqeltrd | |- ( ph -> ( S _D ( F oF / G ) ) e. ( X -cn-> CC ) ) |