This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: General value of ( F oF R G ) with no assumptions on functionality of F and G . (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | offval3 | |- ( ( F e. V /\ G e. W ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( F e. V -> F e. _V ) |
|
| 2 | 1 | adantr | |- ( ( F e. V /\ G e. W ) -> F e. _V ) |
| 3 | elex | |- ( G e. W -> G e. _V ) |
|
| 4 | 3 | adantl | |- ( ( F e. V /\ G e. W ) -> G e. _V ) |
| 5 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 6 | inex1g | |- ( dom F e. _V -> ( dom F i^i dom G ) e. _V ) |
|
| 7 | mptexg | |- ( ( dom F i^i dom G ) e. _V -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
|
| 8 | 5 6 7 | 3syl | |- ( F e. V -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 9 | 8 | adantr | |- ( ( F e. V /\ G e. W ) -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 10 | dmeq | |- ( a = F -> dom a = dom F ) |
|
| 11 | dmeq | |- ( b = G -> dom b = dom G ) |
|
| 12 | 10 11 | ineqan12d | |- ( ( a = F /\ b = G ) -> ( dom a i^i dom b ) = ( dom F i^i dom G ) ) |
| 13 | fveq1 | |- ( a = F -> ( a ` x ) = ( F ` x ) ) |
|
| 14 | fveq1 | |- ( b = G -> ( b ` x ) = ( G ` x ) ) |
|
| 15 | 13 14 | oveqan12d | |- ( ( a = F /\ b = G ) -> ( ( a ` x ) R ( b ` x ) ) = ( ( F ` x ) R ( G ` x ) ) ) |
| 16 | 12 15 | mpteq12dv | |- ( ( a = F /\ b = G ) -> ( x e. ( dom a i^i dom b ) |-> ( ( a ` x ) R ( b ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 17 | df-of | |- oF R = ( a e. _V , b e. _V |-> ( x e. ( dom a i^i dom b ) |-> ( ( a ` x ) R ( b ` x ) ) ) ) |
|
| 18 | 16 17 | ovmpoga | |- ( ( F e. _V /\ G e. _V /\ ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 19 | 2 4 9 18 | syl3anc | |- ( ( F e. V /\ G e. W ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |