This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvco.f | |- ( ph -> F : X --> CC ) |
|
| dvco.x | |- ( ph -> X C_ S ) |
||
| dvco.g | |- ( ph -> G : Y --> X ) |
||
| dvco.y | |- ( ph -> Y C_ T ) |
||
| dvco.s | |- ( ph -> S e. { RR , CC } ) |
||
| dvco.t | |- ( ph -> T e. { RR , CC } ) |
||
| dvco.df | |- ( ph -> ( G ` C ) e. dom ( S _D F ) ) |
||
| dvco.dg | |- ( ph -> C e. dom ( T _D G ) ) |
||
| Assertion | dvco | |- ( ph -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvco.f | |- ( ph -> F : X --> CC ) |
|
| 2 | dvco.x | |- ( ph -> X C_ S ) |
|
| 3 | dvco.g | |- ( ph -> G : Y --> X ) |
|
| 4 | dvco.y | |- ( ph -> Y C_ T ) |
|
| 5 | dvco.s | |- ( ph -> S e. { RR , CC } ) |
|
| 6 | dvco.t | |- ( ph -> T e. { RR , CC } ) |
|
| 7 | dvco.df | |- ( ph -> ( G ` C ) e. dom ( S _D F ) ) |
|
| 8 | dvco.dg | |- ( ph -> C e. dom ( T _D G ) ) |
|
| 9 | dvfg | |- ( T e. { RR , CC } -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) |
|
| 10 | ffun | |- ( ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC -> Fun ( T _D ( F o. G ) ) ) |
|
| 11 | 6 9 10 | 3syl | |- ( ph -> Fun ( T _D ( F o. G ) ) ) |
| 12 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 13 | 5 12 | syl | |- ( ph -> S C_ CC ) |
| 14 | recnprss | |- ( T e. { RR , CC } -> T C_ CC ) |
|
| 15 | 6 14 | syl | |- ( ph -> T C_ CC ) |
| 16 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 17 | ffun | |- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
|
| 18 | funfvbrb | |- ( Fun ( S _D F ) -> ( ( G ` C ) e. dom ( S _D F ) <-> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) ) |
|
| 19 | 5 16 17 18 | 4syl | |- ( ph -> ( ( G ` C ) e. dom ( S _D F ) <-> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) ) |
| 20 | 7 19 | mpbid | |- ( ph -> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) |
| 21 | dvfg | |- ( T e. { RR , CC } -> ( T _D G ) : dom ( T _D G ) --> CC ) |
|
| 22 | ffun | |- ( ( T _D G ) : dom ( T _D G ) --> CC -> Fun ( T _D G ) ) |
|
| 23 | funfvbrb | |- ( Fun ( T _D G ) -> ( C e. dom ( T _D G ) <-> C ( T _D G ) ( ( T _D G ) ` C ) ) ) |
|
| 24 | 6 21 22 23 | 4syl | |- ( ph -> ( C e. dom ( T _D G ) <-> C ( T _D G ) ( ( T _D G ) ` C ) ) ) |
| 25 | 8 24 | mpbid | |- ( ph -> C ( T _D G ) ( ( T _D G ) ` C ) ) |
| 26 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 27 | 1 2 3 4 13 15 20 25 26 | dvcobr | |- ( ph -> C ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) |
| 28 | funbrfv | |- ( Fun ( T _D ( F o. G ) ) -> ( C ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) ) |
|
| 29 | 11 27 28 | sylc | |- ( ph -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) |