This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcj | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf | |- ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC |
|
| 2 | ffun | |- ( ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC -> Fun ( RR _D ( * o. F ) ) ) |
|
| 3 | 1 2 | ax-mp | |- Fun ( RR _D ( * o. F ) ) |
| 4 | simpll | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> F : X --> CC ) |
|
| 5 | simplr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> X C_ RR ) |
|
| 6 | simpr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D F ) ) |
|
| 7 | 4 5 6 | dvcjbr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) ) |
| 8 | funbrfv | |- ( Fun ( RR _D ( * o. F ) ) -> ( x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) -> ( ( RR _D ( * o. F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) ) |
|
| 9 | 3 7 8 | mpsyl | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D ( * o. F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
| 10 | 9 | mpteq2dva | |- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. dom ( RR _D F ) |-> ( ( RR _D ( * o. F ) ) ` x ) ) = ( x e. dom ( RR _D F ) |-> ( * ` ( ( RR _D F ) ` x ) ) ) ) |
| 11 | cjf | |- * : CC --> CC |
|
| 12 | fco | |- ( ( * : CC --> CC /\ F : X --> CC ) -> ( * o. F ) : X --> CC ) |
|
| 13 | 11 12 | mpan | |- ( F : X --> CC -> ( * o. F ) : X --> CC ) |
| 14 | 13 | ad2antrr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> ( * o. F ) : X --> CC ) |
| 15 | simplr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> X C_ RR ) |
|
| 16 | simpr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
|
| 17 | 14 15 16 | dvcjbr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x ( RR _D ( * o. ( * o. F ) ) ) ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) ) |
| 18 | vex | |- x e. _V |
|
| 19 | fvex | |- ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) e. _V |
|
| 20 | 18 19 | breldm | |- ( x ( RR _D ( * o. ( * o. F ) ) ) ( * ` ( ( RR _D ( * o. F ) ) ` x ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) |
| 21 | 17 20 | syl | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D ( * o. F ) ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) |
| 22 | 21 | ex | |- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. dom ( RR _D ( * o. F ) ) -> x e. dom ( RR _D ( * o. ( * o. F ) ) ) ) ) |
| 23 | 22 | ssrdv | |- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) C_ dom ( RR _D ( * o. ( * o. F ) ) ) ) |
| 24 | ffvelcdm | |- ( ( F : X --> CC /\ x e. X ) -> ( F ` x ) e. CC ) |
|
| 25 | 24 | adantlr | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( F ` x ) e. CC ) |
| 26 | 25 | cjcjd | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( * ` ( * ` ( F ` x ) ) ) = ( F ` x ) ) |
| 27 | 26 | mpteq2dva | |- ( ( F : X --> CC /\ X C_ RR ) -> ( x e. X |-> ( * ` ( * ` ( F ` x ) ) ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 28 | 25 | cjcld | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. X ) -> ( * ` ( F ` x ) ) e. CC ) |
| 29 | simpl | |- ( ( F : X --> CC /\ X C_ RR ) -> F : X --> CC ) |
|
| 30 | 29 | feqmptd | |- ( ( F : X --> CC /\ X C_ RR ) -> F = ( x e. X |-> ( F ` x ) ) ) |
| 31 | 11 | a1i | |- ( ( F : X --> CC /\ X C_ RR ) -> * : CC --> CC ) |
| 32 | 31 | feqmptd | |- ( ( F : X --> CC /\ X C_ RR ) -> * = ( y e. CC |-> ( * ` y ) ) ) |
| 33 | fveq2 | |- ( y = ( F ` x ) -> ( * ` y ) = ( * ` ( F ` x ) ) ) |
|
| 34 | 25 30 32 33 | fmptco | |- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. F ) = ( x e. X |-> ( * ` ( F ` x ) ) ) ) |
| 35 | fveq2 | |- ( y = ( * ` ( F ` x ) ) -> ( * ` y ) = ( * ` ( * ` ( F ` x ) ) ) ) |
|
| 36 | 28 34 32 35 | fmptco | |- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( * o. F ) ) = ( x e. X |-> ( * ` ( * ` ( F ` x ) ) ) ) ) |
| 37 | 27 36 30 | 3eqtr4d | |- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( * o. F ) ) = F ) |
| 38 | 37 | oveq2d | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. ( * o. F ) ) ) = ( RR _D F ) ) |
| 39 | 38 | dmeqd | |- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. ( * o. F ) ) ) = dom ( RR _D F ) ) |
| 40 | 23 39 | sseqtrd | |- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) C_ dom ( RR _D F ) ) |
| 41 | fvex | |- ( * ` ( ( RR _D F ) ` x ) ) e. _V |
|
| 42 | 18 41 | breldm | |- ( x ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` x ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
| 43 | 7 42 | syl | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D ( * o. F ) ) ) |
| 44 | 40 43 | eqelssd | |- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D ( * o. F ) ) = dom ( RR _D F ) ) |
| 45 | 44 | feq2d | |- ( ( F : X --> CC /\ X C_ RR ) -> ( ( RR _D ( * o. F ) ) : dom ( RR _D ( * o. F ) ) --> CC <-> ( RR _D ( * o. F ) ) : dom ( RR _D F ) --> CC ) ) |
| 46 | 1 45 | mpbii | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) : dom ( RR _D F ) --> CC ) |
| 47 | 46 | feqmptd | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( x e. dom ( RR _D F ) |-> ( ( RR _D ( * o. F ) ) ` x ) ) ) |
| 48 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 49 | 48 | ffvelcdmi | |- ( x e. dom ( RR _D F ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 50 | 49 | adantl | |- ( ( ( F : X --> CC /\ X C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 51 | 48 | a1i | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> CC ) |
| 52 | 51 | feqmptd | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D F ) = ( x e. dom ( RR _D F ) |-> ( ( RR _D F ) ` x ) ) ) |
| 53 | fveq2 | |- ( y = ( ( RR _D F ) ` x ) -> ( * ` y ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
|
| 54 | 50 52 32 53 | fmptco | |- ( ( F : X --> CC /\ X C_ RR ) -> ( * o. ( RR _D F ) ) = ( x e. dom ( RR _D F ) |-> ( * ` ( ( RR _D F ) ` x ) ) ) ) |
| 55 | 10 47 54 | 3eqtr4d | |- ( ( F : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |