This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a Cartesian product. Part of Theorem 3.13(x) of Monk1 p. 37. (Contributed by NM, 28-Jul-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 12-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxp | |- ( B =/= (/) -> dom ( A X. B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | eldm | |- ( x e. dom ( A X. B ) <-> E. y x ( A X. B ) y ) |
| 3 | brxp | |- ( x ( A X. B ) y <-> ( x e. A /\ y e. B ) ) |
|
| 4 | 3 | exbii | |- ( E. y x ( A X. B ) y <-> E. y ( x e. A /\ y e. B ) ) |
| 5 | 19.42v | |- ( E. y ( x e. A /\ y e. B ) <-> ( x e. A /\ E. y y e. B ) ) |
|
| 6 | 2 4 5 | 3bitri | |- ( x e. dom ( A X. B ) <-> ( x e. A /\ E. y y e. B ) ) |
| 7 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
| 8 | 7 | biimpi | |- ( B =/= (/) -> E. y y e. B ) |
| 9 | 8 | biantrud | |- ( B =/= (/) -> ( x e. A <-> ( x e. A /\ E. y y e. B ) ) ) |
| 10 | 6 9 | bitr4id | |- ( B =/= (/) -> ( x e. dom ( A X. B ) <-> x e. A ) ) |
| 11 | 10 | eqrdv | |- ( B =/= (/) -> dom ( A X. B ) = A ) |