This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function analogue of subeq0 . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofsubeq0 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> F = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F : A --> CC ) |
|
| 2 | 1 | ffnd | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> F Fn A ) |
| 3 | simp3 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G : A --> CC ) |
|
| 4 | 3 | ffnd | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> G Fn A ) |
| 5 | simp1 | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> A e. V ) |
|
| 6 | inidm | |- ( A i^i A ) = A |
|
| 7 | eqidd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 8 | eqidd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
|
| 9 | 2 4 5 5 6 7 8 | ofval | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 10 | c0ex | |- 0 e. _V |
|
| 11 | 10 | fvconst2 | |- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 12 | 11 | adantl | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 13 | 9 12 | eqeq12d | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) <-> ( ( F ` x ) - ( G ` x ) ) = 0 ) ) |
| 14 | 1 | ffvelcdmda | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( F ` x ) e. CC ) |
| 15 | 3 | ffvelcdmda | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( G ` x ) e. CC ) |
| 16 | 14 15 | subeq0ad | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F ` x ) - ( G ` x ) ) = 0 <-> ( F ` x ) = ( G ` x ) ) ) |
| 17 | 13 16 | bitrd | |- ( ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) /\ x e. A ) -> ( ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 18 | 17 | ralbidva | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( A. x e. A ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| 19 | 2 4 5 5 6 | offn | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F oF - G ) Fn A ) |
| 20 | 10 | fconst | |- ( A X. { 0 } ) : A --> { 0 } |
| 21 | ffn | |- ( ( A X. { 0 } ) : A --> { 0 } -> ( A X. { 0 } ) Fn A ) |
|
| 22 | 20 21 | ax-mp | |- ( A X. { 0 } ) Fn A |
| 23 | eqfnfv | |- ( ( ( F oF - G ) Fn A /\ ( A X. { 0 } ) Fn A ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> A. x e. A ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) ) ) |
|
| 24 | 19 22 23 | sylancl | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> A. x e. A ( ( F oF - G ) ` x ) = ( ( A X. { 0 } ) ` x ) ) ) |
| 25 | eqfnfv | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
|
| 26 | 2 4 25 | syl2anc | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| 27 | 18 24 26 | 3bitr4d | |- ( ( A e. V /\ F : A --> CC /\ G : A --> CC ) -> ( ( F oF - G ) = ( A X. { 0 } ) <-> F = G ) ) |