This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnsnopg | |- ( A e. V -> ran { <. A , B >. } = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn | |- ran { <. A , B >. } = dom `' { <. A , B >. } |
|
| 2 | dfdm4 | |- dom { <. B , A >. } = ran `' { <. B , A >. } |
|
| 3 | df-rn | |- ran `' { <. B , A >. } = dom `' `' { <. B , A >. } |
|
| 4 | cnvcnvsn | |- `' `' { <. B , A >. } = `' { <. A , B >. } |
|
| 5 | 4 | dmeqi | |- dom `' `' { <. B , A >. } = dom `' { <. A , B >. } |
| 6 | 2 3 5 | 3eqtri | |- dom { <. B , A >. } = dom `' { <. A , B >. } |
| 7 | 1 6 | eqtr4i | |- ran { <. A , B >. } = dom { <. B , A >. } |
| 8 | dmsnopg | |- ( A e. V -> dom { <. B , A >. } = { B } ) |
|
| 9 | 7 8 | eqtrid | |- ( A e. V -> ran { <. A , B >. } = { B } ) |