This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a closed set is itself. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcid | |- ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | mress | |- ( ( C e. ( Moore ` X ) /\ U e. C ) -> U C_ X ) |
|
| 3 | 1 | mrcval | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
| 4 | 2 3 | syldan | |- ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
| 5 | intmin | |- ( U e. C -> |^| { s e. C | U C_ s } = U ) |
|
| 6 | 5 | adantl | |- ( ( C e. ( Moore ` X ) /\ U e. C ) -> |^| { s e. C | U C_ s } = U ) |
| 7 | 4 6 | eqtrd | |- ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = U ) |