This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdf1o.1 | |- ( ph -> G dom DProd S ) |
|
| dprdf1o.2 | |- ( ph -> dom S = I ) |
||
| dprdf1o.3 | |- ( ph -> F : J -1-1-onto-> I ) |
||
| Assertion | dprdf1o | |- ( ph -> ( G dom DProd ( S o. F ) /\ ( G DProd ( S o. F ) ) = ( G DProd S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdf1o.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdf1o.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdf1o.3 | |- ( ph -> F : J -1-1-onto-> I ) |
|
| 4 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 7 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 8 | 1 7 | syl | |- ( ph -> G e. Grp ) |
| 9 | f1of1 | |- ( F : J -1-1-onto-> I -> F : J -1-1-> I ) |
|
| 10 | 3 9 | syl | |- ( ph -> F : J -1-1-> I ) |
| 11 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 12 | f1dmex | |- ( ( F : J -1-1-> I /\ I e. _V ) -> J e. _V ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ph -> J e. _V ) |
| 14 | 1 2 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 15 | f1of | |- ( F : J -1-1-onto-> I -> F : J --> I ) |
|
| 16 | 3 15 | syl | |- ( ph -> F : J --> I ) |
| 17 | fco | |- ( ( S : I --> ( SubGrp ` G ) /\ F : J --> I ) -> ( S o. F ) : J --> ( SubGrp ` G ) ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ph -> ( S o. F ) : J --> ( SubGrp ` G ) ) |
| 19 | 1 | adantr | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> G dom DProd S ) |
| 20 | 2 | adantr | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> dom S = I ) |
| 21 | 16 | adantr | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> F : J --> I ) |
| 22 | simpr1 | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> x e. J ) |
|
| 23 | 21 22 | ffvelcdmd | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` x ) e. I ) |
| 24 | simpr2 | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> y e. J ) |
|
| 25 | 21 24 | ffvelcdmd | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` y ) e. I ) |
| 26 | simpr3 | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> x =/= y ) |
|
| 27 | 10 | adantr | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> F : J -1-1-> I ) |
| 28 | f1fveq | |- ( ( F : J -1-1-> I /\ ( x e. J /\ y e. J ) ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) ) |
|
| 29 | 27 22 24 28 | syl12anc | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( F ` x ) = ( F ` y ) <-> x = y ) ) |
| 30 | 29 | necon3bid | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( F ` x ) =/= ( F ` y ) <-> x =/= y ) ) |
| 31 | 26 30 | mpbird | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( F ` x ) =/= ( F ` y ) ) |
| 32 | 19 20 23 25 31 4 | dprdcntz | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( S ` ( F ` x ) ) C_ ( ( Cntz ` G ) ` ( S ` ( F ` y ) ) ) ) |
| 33 | fvco3 | |- ( ( F : J --> I /\ x e. J ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) ) |
|
| 34 | 21 22 33 | syl2anc | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) ) |
| 35 | fvco3 | |- ( ( F : J --> I /\ y e. J ) -> ( ( S o. F ) ` y ) = ( S ` ( F ` y ) ) ) |
|
| 36 | 21 24 35 | syl2anc | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` y ) = ( S ` ( F ` y ) ) ) |
| 37 | 36 | fveq2d | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( S o. F ) ` y ) ) = ( ( Cntz ` G ) ` ( S ` ( F ` y ) ) ) ) |
| 38 | 32 34 37 | 3sstr4d | |- ( ( ph /\ ( x e. J /\ y e. J /\ x =/= y ) ) -> ( ( S o. F ) ` x ) C_ ( ( Cntz ` G ) ` ( ( S o. F ) ` y ) ) ) |
| 39 | 16 33 | sylan | |- ( ( ph /\ x e. J ) -> ( ( S o. F ) ` x ) = ( S ` ( F ` x ) ) ) |
| 40 | imaco | |- ( ( S o. F ) " ( J \ { x } ) ) = ( S " ( F " ( J \ { x } ) ) ) |
|
| 41 | 3 | adantr | |- ( ( ph /\ x e. J ) -> F : J -1-1-onto-> I ) |
| 42 | dff1o3 | |- ( F : J -1-1-onto-> I <-> ( F : J -onto-> I /\ Fun `' F ) ) |
|
| 43 | 42 | simprbi | |- ( F : J -1-1-onto-> I -> Fun `' F ) |
| 44 | imadif | |- ( Fun `' F -> ( F " ( J \ { x } ) ) = ( ( F " J ) \ ( F " { x } ) ) ) |
|
| 45 | 41 43 44 | 3syl | |- ( ( ph /\ x e. J ) -> ( F " ( J \ { x } ) ) = ( ( F " J ) \ ( F " { x } ) ) ) |
| 46 | f1ofo | |- ( F : J -1-1-onto-> I -> F : J -onto-> I ) |
|
| 47 | foima | |- ( F : J -onto-> I -> ( F " J ) = I ) |
|
| 48 | 41 46 47 | 3syl | |- ( ( ph /\ x e. J ) -> ( F " J ) = I ) |
| 49 | f1ofn | |- ( F : J -1-1-onto-> I -> F Fn J ) |
|
| 50 | 3 49 | syl | |- ( ph -> F Fn J ) |
| 51 | fnsnfv | |- ( ( F Fn J /\ x e. J ) -> { ( F ` x ) } = ( F " { x } ) ) |
|
| 52 | 50 51 | sylan | |- ( ( ph /\ x e. J ) -> { ( F ` x ) } = ( F " { x } ) ) |
| 53 | 52 | eqcomd | |- ( ( ph /\ x e. J ) -> ( F " { x } ) = { ( F ` x ) } ) |
| 54 | 48 53 | difeq12d | |- ( ( ph /\ x e. J ) -> ( ( F " J ) \ ( F " { x } ) ) = ( I \ { ( F ` x ) } ) ) |
| 55 | 45 54 | eqtrd | |- ( ( ph /\ x e. J ) -> ( F " ( J \ { x } ) ) = ( I \ { ( F ` x ) } ) ) |
| 56 | 55 | imaeq2d | |- ( ( ph /\ x e. J ) -> ( S " ( F " ( J \ { x } ) ) ) = ( S " ( I \ { ( F ` x ) } ) ) ) |
| 57 | 40 56 | eqtrid | |- ( ( ph /\ x e. J ) -> ( ( S o. F ) " ( J \ { x } ) ) = ( S " ( I \ { ( F ` x ) } ) ) ) |
| 58 | 57 | unieqd | |- ( ( ph /\ x e. J ) -> U. ( ( S o. F ) " ( J \ { x } ) ) = U. ( S " ( I \ { ( F ` x ) } ) ) ) |
| 59 | 58 | fveq2d | |- ( ( ph /\ x e. J ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) |
| 60 | 39 59 | ineq12d | |- ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = ( ( S ` ( F ` x ) ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) ) |
| 61 | 1 | adantr | |- ( ( ph /\ x e. J ) -> G dom DProd S ) |
| 62 | 2 | adantr | |- ( ( ph /\ x e. J ) -> dom S = I ) |
| 63 | 16 | ffvelcdmda | |- ( ( ph /\ x e. J ) -> ( F ` x ) e. I ) |
| 64 | 61 62 63 5 6 | dprddisj | |- ( ( ph /\ x e. J ) -> ( ( S ` ( F ` x ) ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { ( F ` x ) } ) ) ) ) = { ( 0g ` G ) } ) |
| 65 | 60 64 | eqtrd | |- ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 66 | eqimss | |- ( ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) = { ( 0g ` G ) } -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
|
| 67 | 65 66 | syl | |- ( ( ph /\ x e. J ) -> ( ( ( S o. F ) ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( S o. F ) " ( J \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 68 | 4 5 6 8 13 18 38 67 | dmdprdd | |- ( ph -> G dom DProd ( S o. F ) ) |
| 69 | rnco2 | |- ran ( S o. F ) = ( S " ran F ) |
|
| 70 | forn | |- ( F : J -onto-> I -> ran F = I ) |
|
| 71 | 3 46 70 | 3syl | |- ( ph -> ran F = I ) |
| 72 | 71 | imaeq2d | |- ( ph -> ( S " ran F ) = ( S " I ) ) |
| 73 | ffn | |- ( S : I --> ( SubGrp ` G ) -> S Fn I ) |
|
| 74 | fnima | |- ( S Fn I -> ( S " I ) = ran S ) |
|
| 75 | 14 73 74 | 3syl | |- ( ph -> ( S " I ) = ran S ) |
| 76 | 72 75 | eqtrd | |- ( ph -> ( S " ran F ) = ran S ) |
| 77 | 69 76 | eqtrid | |- ( ph -> ran ( S o. F ) = ran S ) |
| 78 | 77 | unieqd | |- ( ph -> U. ran ( S o. F ) = U. ran S ) |
| 79 | 78 | fveq2d | |- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 80 | 6 | dprdspan | |- ( G dom DProd ( S o. F ) -> ( G DProd ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) ) |
| 81 | 68 80 | syl | |- ( ph -> ( G DProd ( S o. F ) ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran ( S o. F ) ) ) |
| 82 | 6 | dprdspan | |- ( G dom DProd S -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 83 | 1 82 | syl | |- ( ph -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 84 | 79 81 83 | 3eqtr4d | |- ( ph -> ( G DProd ( S o. F ) ) = ( G DProd S ) ) |
| 85 | 68 84 | jca | |- ( ph -> ( G dom DProd ( S o. F ) /\ ( G DProd ( S o. F ) ) = ( G DProd S ) ) ) |