This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdf1.1 | |- ( ph -> G dom DProd S ) |
|
| dprdf1.2 | |- ( ph -> dom S = I ) |
||
| dprdf1.3 | |- ( ph -> F : J -1-1-> I ) |
||
| Assertion | dprdf1 | |- ( ph -> ( G dom DProd ( S o. F ) /\ ( G DProd ( S o. F ) ) C_ ( G DProd S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdf1.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdf1.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdf1.3 | |- ( ph -> F : J -1-1-> I ) |
|
| 4 | f1f | |- ( F : J -1-1-> I -> F : J --> I ) |
|
| 5 | frn | |- ( F : J --> I -> ran F C_ I ) |
|
| 6 | 3 4 5 | 3syl | |- ( ph -> ran F C_ I ) |
| 7 | 1 2 6 | dprdres | |- ( ph -> ( G dom DProd ( S |` ran F ) /\ ( G DProd ( S |` ran F ) ) C_ ( G DProd S ) ) ) |
| 8 | 7 | simpld | |- ( ph -> G dom DProd ( S |` ran F ) ) |
| 9 | 1 2 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 10 | 9 6 | fssresd | |- ( ph -> ( S |` ran F ) : ran F --> ( SubGrp ` G ) ) |
| 11 | 10 | fdmd | |- ( ph -> dom ( S |` ran F ) = ran F ) |
| 12 | f1f1orn | |- ( F : J -1-1-> I -> F : J -1-1-onto-> ran F ) |
|
| 13 | 3 12 | syl | |- ( ph -> F : J -1-1-onto-> ran F ) |
| 14 | 8 11 13 | dprdf1o | |- ( ph -> ( G dom DProd ( ( S |` ran F ) o. F ) /\ ( G DProd ( ( S |` ran F ) o. F ) ) = ( G DProd ( S |` ran F ) ) ) ) |
| 15 | 14 | simpld | |- ( ph -> G dom DProd ( ( S |` ran F ) o. F ) ) |
| 16 | ssid | |- ran F C_ ran F |
|
| 17 | cores | |- ( ran F C_ ran F -> ( ( S |` ran F ) o. F ) = ( S o. F ) ) |
|
| 18 | 16 17 | ax-mp | |- ( ( S |` ran F ) o. F ) = ( S o. F ) |
| 19 | 15 18 | breqtrdi | |- ( ph -> G dom DProd ( S o. F ) ) |
| 20 | 18 | oveq2i | |- ( G DProd ( ( S |` ran F ) o. F ) ) = ( G DProd ( S o. F ) ) |
| 21 | 14 | simprd | |- ( ph -> ( G DProd ( ( S |` ran F ) o. F ) ) = ( G DProd ( S |` ran F ) ) ) |
| 22 | 20 21 | eqtr3id | |- ( ph -> ( G DProd ( S o. F ) ) = ( G DProd ( S |` ran F ) ) ) |
| 23 | 7 | simprd | |- ( ph -> ( G DProd ( S |` ran F ) ) C_ ( G DProd S ) ) |
| 24 | 22 23 | eqsstrd | |- ( ph -> ( G DProd ( S o. F ) ) C_ ( G DProd S ) ) |
| 25 | 19 24 | jca | |- ( ph -> ( G dom DProd ( S o. F ) /\ ( G DProd ( S o. F ) ) C_ ( G DProd S ) ) ) |